These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 35515809)
1. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809 [TBL] [Abstract][Full Text] [Related]
2. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. Xu Y; Chang M; Fang C; Liu Y; Qiu Y; Ou M; Peng J; Wei P; Deng Z; Sun S; Sun X; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2019 Aug; 11(33):29985-29992. PubMed ID: 31364834 [TBL] [Abstract][Full Text] [Related]
3. Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries. Xue Y; Chen Y; Shen X; Zhong A; Ji Z; Cheng J; Kong L; Yuan A J Colloid Interface Sci; 2022 Mar; 609():297-306. PubMed ID: 34896830 [TBL] [Abstract][Full Text] [Related]
4. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
5. Hierarchically Designed Cathodes Composed of Vanadium Hexacyanoferrate@Copper Hexacyanoferrate with Enhanced Cycling Stability. Choi TU; Baek G; Lee SG; Lee JH ACS Appl Mater Interfaces; 2020 Jun; 12(22):24817-24826. PubMed ID: 32367707 [TBL] [Abstract][Full Text] [Related]
6. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
7. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
8. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
9. Vanadium Hexacyanoferrate as a High-Capacity and High-Voltage Cathode for Aqueous Rechargeable Zinc Ion Batteries. Zhang S; Pang Q; Ai Y; He W; Fu Y; Xing M; Tian Y; Luo X Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500891 [TBL] [Abstract][Full Text] [Related]
10. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
11. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries. Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502 [TBL] [Abstract][Full Text] [Related]
12. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
13. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. Luo Y; Shen J; Yao Y; Dai J; Ling F; Li L; Jiang Y; Wu X; Rui X; Yu Y Adv Mater; 2024 Aug; 36(32):e2405458. PubMed ID: 38839062 [TBL] [Abstract][Full Text] [Related]
14. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related]
15. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
16. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
17. Acid-assisted synthesis of core-shell Prussian blue cathode for sodium-ion batteries. Wang K; Yang M; Liu Q; Cao S; Wang Y; Hu T; Peng Z J Colloid Interface Sci; 2025 Jan; 678(Pt C):346-358. PubMed ID: 39298987 [TBL] [Abstract][Full Text] [Related]
18. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN) Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229 [TBL] [Abstract][Full Text] [Related]
19. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
20. Dual Redox Reactions of Silver Hexacyanoferrate Prussian Blue Analogue Enable Superior Electrochemical Performance for Zinc-ion Storage. Wang L; Liu N; Li Q; Wang X; Liu J; Xu Y; Luo Z; Zhang N; Li F Angew Chem Int Ed Engl; 2024 Oct; ():e202416392. PubMed ID: 39401949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]