These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35515823)

  • 1. Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions.
    Fujiwara M; Tsukahara R; Sera Y; Yukawa H; Baba Y; Shikata S; Hashimoto H
    RSC Adv; 2019 Apr; 9(22):12606-12614. PubMed ID: 35515823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.
    Ryan RG; Stacey A; O'Donnell KM; Ohshima T; Johnson BC; Hollenberg LCL; Mulvaney P; Simpson DA
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):13143-13149. PubMed ID: 29557161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors.
    Liu GQ; Liu RB; Li Q
    Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing bulk diamond spin coherence in high-purity nanodiamonds.
    Knowles HS; Kara DM; Atatüre M
    Nat Mater; 2014 Jan; 13(1):21-5. PubMed ID: 24270582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds - A magnetic resonance perspective.
    Segawa TF; Igarashi R
    Prog Nucl Magn Reson Spectrosc; 2023; 134-135():20-38. PubMed ID: 37321756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds.
    Barbiero M; Castelletto S; Gan X; Gu M
    Light Sci Appl; 2017 Nov; 6(11):e17085. PubMed ID: 30167213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential.
    Karaveli S; Gaathon O; Wolcott A; Sakakibara R; Shemesh OA; Peterka DS; Boyden ES; Owen JS; Yuste R; Englund D
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3938-43. PubMed ID: 27035935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers.
    Terada D; Segawa TF; Shames AI; Onoda S; Ohshima T; O Sawa E; Igarashi R; Shirakawa M
    ACS Nano; 2019 Jun; 13(6):6461-6468. PubMed ID: 31140778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-Assisted Self-Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies.
    Shulevitz HJ; Huang TY; Xu J; Neuhaus SJ; Patel RN; Choi YC; Bassett LC; Kagan CR
    ACS Nano; 2022 Feb; 16(2):1847-1856. PubMed ID: 35025204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
    Arroyo-Camejo S; Adam MP; Besbes M; Hugonin JP; Jacques V; Greffet JJ; Roch JF; Hell SW; Treussart F
    ACS Nano; 2013 Dec; 7(12):10912-9. PubMed ID: 24245613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap.
    Kayci M; Chang HC; Radenovic A
    Nano Lett; 2014 Sep; 14(9):5335-41. PubMed ID: 25111386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically Precise Detection and Manipulation of Nitrogen-Vacancy Centers in Nanodiamonds.
    Hudak BM; Stroud RM
    ACS Nano; 2023 Apr; 17(8):7241-7249. PubMed ID: 37027786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.
    Hopper DA; Grote RR; Parks SM; Bassett LC
    ACS Nano; 2018 May; 12(5):4678-4686. PubMed ID: 29652481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Stabilization and Enrichment of Shallow Nitrogen-Vacancy Centers in Diamond for Biosensing and Spin-Polarization Transfer.
    Gorrini F; Bifone A
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diamond Quantum Devices in Biology.
    Wu Y; Jelezko F; Plenio MB; Weil T
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6586-98. PubMed ID: 27120692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanodiamonds That Swim.
    Kim JT; Choudhury U; Jeong HH; Fischer P
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28605070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications.
    Wu Y; Weil T
    Adv Sci (Weinh); 2022 Jul; 9(19):e2200059. PubMed ID: 35343101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing.
    Hsiao WW; Hui YY; Tsai PC; Chang HC
    Acc Chem Res; 2016 Mar; 49(3):400-7. PubMed ID: 26882283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Dynamic Readout of a Chemical Redox Process Using Radicals Coupled with Nitrogen-Vacancy Centers in Nanodiamonds.
    Barton J; Gulka M; Tarabek J; Mindarava Y; Wang Z; Schimer J; Raabova H; Bednar J; Plenio MB; Jelezko F; Nesladek M; Cigler P
    ACS Nano; 2020 Oct; 14(10):12938-12950. PubMed ID: 32790348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape and crystallographic orientation of nanodiamonds for quantum sensing.
    Ong SY; Chipaux M; Nagl A; Schirhagl R
    Phys Chem Chem Phys; 2017 May; 19(17):10748-10752. PubMed ID: 28111681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.