These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35515896)
21. Enhanced Electromagnetic Wave Absorption Properties of Poly(3,4-ethylenedioxythiophene) Nanofiber-Decorated Graphene Sheets by Non-covalent Interactions. Zhang X; Huang Y; Liu P Nanomicro Lett; 2016; 8(2):131-136. PubMed ID: 30460272 [TBL] [Abstract][Full Text] [Related]
22. Facile synthesis of highly conductive MoS Chai J; Zhang D; Cheng J; Jia Y; Ba X; Gao Y; Zhu L; Wang H; Cao M RSC Adv; 2018 Oct; 8(64):36616-36624. PubMed ID: 35558962 [TBL] [Abstract][Full Text] [Related]
23. Enhanced electromagnetic wave absorption of Fe Wang H; Qu Q; Gao J; He Y Nanoscale; 2023 May; 15(18):8255-8269. PubMed ID: 37073820 [TBL] [Abstract][Full Text] [Related]
24. Facile synthesis of 3D Ni@C nanocomposites derived from two kinds of petal-like Ni-based MOFs towards lightweight and efficient microwave absorbers. Yi P; Yao Z; Zhou J; Wei B; Lei L; Tan R; Fan H Nanoscale; 2021 Feb; 13(5):3119-3135. PubMed ID: 33523065 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of CuS/Fe Dai B; Dong F; Wang H; Qu Y; Ding J; Ma Y; Ma M; Li T J Colloid Interface Sci; 2023 Mar; 634():481-494. PubMed ID: 36542977 [TBL] [Abstract][Full Text] [Related]
26. In-situ hydrothermal synthesis of NiCo alloy particles@hydrophilic carbon cloth to construct corncob-like heterostructure for high-performance electromagnetic wave absorbers. Chen Z; Tian K; Zhang C; Shu R; Zhu J; Liu Y; Huang Y; Liu X J Colloid Interface Sci; 2022 Jun; 616():823-833. PubMed ID: 35248969 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of hierarchical reduced graphene oxide decorated with core-shell Fe Dong F; Dai B; Zhang H; Shi Y; Zhao R; Ding X; Wang H; Li T; Ma M; Ma Y J Colloid Interface Sci; 2023 Nov; 649():943-954. PubMed ID: 37392684 [TBL] [Abstract][Full Text] [Related]
28. High-Performance Electromagnetic Wave Absorbers Based on Two Kinds of Nickel-Based MOF-Derived Ni@C Microspheres. Yan J; Huang Y; Yan Y; Ding L; Liu P ACS Appl Mater Interfaces; 2019 Oct; 11(43):40781-40792. PubMed ID: 31588726 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of an Ultralight Ni-MOF-rGO Aerogel with Both Dielectric and Magnetic Performances for Enhanced Microwave Absorption: Microspheres with Hollow Structure Grow onto the GO Nanosheets. Cao K; Yang X; Zhao R; Xue W ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36759507 [TBL] [Abstract][Full Text] [Related]
30. NiS₂@MoS₂ Nanospheres Anchored on Reduced Graphene Oxide: A Novel Ternary Heterostructure with Enhanced Electromagnetic Absorption Property. Zhang Z; Lv X; Chen Y; Zhang P; Sui M; Liu H; Sun X Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30791422 [TBL] [Abstract][Full Text] [Related]
31. A rational route towards dual wave-transparent type of carbonyl iron@SiO Zhang N; Wang Y; Chen P; Chen W J Colloid Interface Sci; 2021 Jan; 581(Pt A):84-95. PubMed ID: 32771752 [TBL] [Abstract][Full Text] [Related]
32. Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere-CuO nano-rice core-shell composite. Zhao B; Shao G; Fan B; Zhao W; Zhang R Phys Chem Chem Phys; 2015 Feb; 17(8):6044-52. PubMed ID: 25639203 [TBL] [Abstract][Full Text] [Related]
33. Ultra-High Electromagnetic Absorption Property of One-Dimensional Carbon-Supported Ni/Mo Gao S; Feng J; Wang GS; Liang BL Front Chem; 2019; 7():427. PubMed ID: 31281808 [TBL] [Abstract][Full Text] [Related]
34. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. Kong M; Liu X; Jia Z; Wang B; Wu X; Wu G J Colloid Interface Sci; 2021 Dec; 604():39-51. PubMed ID: 34261018 [TBL] [Abstract][Full Text] [Related]
35. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361 [TBL] [Abstract][Full Text] [Related]
36. Facile synthesis and microwave absorption investigation of activated carbon@Fe Yin P; Deng Y; Zhang L; Li N; Feng X; Wang J; Zhang Y RSC Adv; 2018 Jun; 8(41):23048-23057. PubMed ID: 35540128 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of 1D Ni nanochains@Zn Wang H; Zhang H; Feng S; Shi Y; Wang H; Zhao K; Nie A; Li T; Ma M; Ma Y J Colloid Interface Sci; 2023 Dec; 652(Pt A):258-271. PubMed ID: 37595443 [TBL] [Abstract][Full Text] [Related]
38. Promising Ti Liang L; Han G; Li Y; Zhao B; Zhou B; Feng Y; Ma J; Wang Y; Zhang R; Liu C ACS Appl Mater Interfaces; 2019 Jul; 11(28):25399-25409. PubMed ID: 31259512 [TBL] [Abstract][Full Text] [Related]
39. Controllable Architecture of ZnO/FeNi Composites Derived from Trimetallic ZnFeNi Layered Double Hydroxides for High-Performance Electromagnetic Wave Absorbers. Gan F; Rao Q; Deng J; Cheng L; Zhong Y; Lu Z; Wang F; Wang J; Zhou H; Rao G Small; 2023 Jul; 19(27):e2300257. PubMed ID: 36967536 [TBL] [Abstract][Full Text] [Related]
40. Synthesis of FeCoNi/C decorated graphene composites derived from trimetallic metal-organic framework as ultrathin and high-performance electromagnetic wave absorbers. Shu R; Li X; Ge C; Wang L J Colloid Interface Sci; 2023 Jan; 630(Pt A):754-762. PubMed ID: 36279836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]