These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35515951)

  • 1. VUV spectroscopy of an electron irradiated benzene : carbon dioxide interstellar ice analogue.
    James RL; Jones NC; Hoffmann SV; Dawes A
    RSC Adv; 2019 Feb; 9(10):5453-5459. PubMed ID: 35515951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene.
    Dawes A; Pascual N; Hoffmann SV; Jones NC; Mason NJ
    Phys Chem Chem Phys; 2017 Oct; 19(40):27544-27555. PubMed ID: 28979950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the interaction between solid benzene and water using vacuum ultraviolet and infrared spectroscopy.
    Dawes A; Pascual N; Mason NJ; Gärtner S; Hoffmann SV; Jones NC
    Phys Chem Chem Phys; 2018 Jun; 20(22):15273-15287. PubMed ID: 29790512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a unique VUV photoabsorption band of carbonic acid for its identification in radiation and thermally processed water-carbon dioxide ices.
    Pavithraa S; Lo JI; Cheng BM; Sekhar BNR; Mason NJ; Sivaraman B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():130-132. PubMed ID: 30825863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residue from vacuum ultraviolet irradiation of benzene ices: Insights into the physical structure of astrophysical dust.
    Rahul KK; Shivakarthik E; Meka JK; Das A; Chandrasekaran V; Rajasekhar BN; Lo JI; Cheng BM; Janardhan P; Bhardwaj A; Mason NJ; Sivaraman B
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():117797. PubMed ID: 31837964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the formation of ozone in oxygen-rich solar system ices via ionizing radiation.
    Ennis CP; Bennett CJ; Kaiser RI
    Phys Chem Chem Phys; 2011 May; 13(20):9469-82. PubMed ID: 21483931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon.
    Pavithraa S; Lo JI; Rahul K; Raja Sekhar BN; Cheng BM; Mason NJ; Sivaraman B
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():172-176. PubMed ID: 28922643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VUV photoabsorption spectroscopy of sulfur dioxide ice.
    Holtom PD; Dawes A; Mukerji RJ; Davis MP; Webb SM; Hoffman SV; Mason NJ
    Phys Chem Chem Phys; 2006 Feb; 8(6):714-8. PubMed ID: 16482311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs.
    Elsila J; Allamandola LJ; Sandford SA
    Astrophys J; 1997 Apr; 479(2 Pt 1):818-38. PubMed ID: 11540158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation processing of formamide and formamide:water ices on silicate grain analogue.
    Dawley MM; Pirim C; Orlando TM
    J Phys Chem A; 2014 Feb; 118(7):1228-36. PubMed ID: 24460097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physical and infrared spectral properties of CO2 in astrophysical ice analogs.
    Sandford SA; Allamandola LJ
    Astrophys J; 1990 May; 355(1):357-72. PubMed ID: 11538691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-sensitivity Raman spectrometer to study pristine and irradiated interstellar ice analogs.
    Bennett CJ; Brotton SJ; Jones BM; Misra AK; Sharma SK; Kaiser RI
    Anal Chem; 2013 Jun; 85(12):5659-65. PubMed ID: 23662702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of CO2 ice and the absence of amorphous CO2 ice in space.
    Escribano RM; Muñoz Caro GM; Cruz-Diaz GA; Rodríguez-Lazcano Y; Maté B
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12899-904. PubMed ID: 23858474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.
    Kofman V; Witlox MJA; Bouwman J; Ten Kate IL; Linnartz H
    Rev Sci Instrum; 2018 May; 89(5):053111. PubMed ID: 29864809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: vacuum ultraviolet photoabsorption of interstellar icy thiols.
    Bhuin RG; Sivaraman B; Lo JI; Sekhar BN; Cheng BM; Pradeep T; Mason NJ
    J Chem Phys; 2014 Dec; 141(23):231101. PubMed ID: 25527912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples.
    Bennett CJ; Jamieson CS; Kaiser RI
    Phys Chem Chem Phys; 2010 Apr; 12(16):4032-50. PubMed ID: 20379495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of carbonaceous dust analogues and glycine under UV irradiation and electron bombardment.
    Maté B; Tanarro I; Moreno MA; Jiménez-Redondo M; Escribano R; Herrero VJ
    Faraday Discuss; 2014; 168():267-85. PubMed ID: 25302385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient electron-promoted desorption of benzene from water ice surfaces.
    Marchione D; Thrower JD; McCoustra MR
    Phys Chem Chem Phys; 2016 Feb; 18(5):4026-34. PubMed ID: 26778647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic investigation of CO
    James RL; Ioppolo S; Hoffmann SV; Jones NC; Mason NJ; Dawes A
    RSC Adv; 2021 Oct; 11(52):33055-33069. PubMed ID: 35493573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.
    Maté B; Molpeceres G; Jiménez-Redondo M; Tanarro I; Herrero VJ
    Astrophys J; 2016 Nov; 831(1):. PubMed ID: 28133388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.