These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35516272)

  • 1. A novel fabrication technique for high-aspect-ratio nanopillar arrays for SERS application.
    Duan T; Gu C; Ang DS; Xu K; Liu Z
    RSC Adv; 2020 Dec; 10(73):45037-45041. PubMed ID: 35516272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable fabrication of silver-deposited polyurethane acrylate nanopillar array film as a flexible surface-enhanced Raman scattering (SERS) substrate with high sensitivity and reproducibility.
    Lim H; Jeon CS; Park YM; Lee HN; Pyun SH; Kim HJ
    Mikrochim Acta; 2022 Jul; 189(8):288. PubMed ID: 35879508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering.
    Kiraly B; Yang S; Huang TJ
    Nanotechnology; 2013 Jun; 24(24):245704. PubMed ID: 23703091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching.
    Morton KJ; Nieberg G; Bai S; Chou SY
    Nanotechnology; 2008 Aug; 19(34):345301. PubMed ID: 21730643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "In situ" hard mask materials: a new methodology for creation of vertical silicon nanopillar and nanowire arrays.
    Ghoshal T; Senthamaraikannan R; Shaw MT; Holmes JD; Morris MA
    Nanoscale; 2012 Dec; 4(24):7743-50. PubMed ID: 23138854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Sub-25 nm Diameter GaSb Nanopillar Arrays by Nanoscale Self-Mask Effect.
    Lin T; Ramadurgam S; Liao CS; Zi Y; Yang C
    Nano Lett; 2015 Aug; 15(8):4993-5000. PubMed ID: 26218265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy.
    Li T; Wu K; Rindzevicius T; Wang Z; Schulte L; Schmidt MS; Boisen A; Ndoni S
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15668-75. PubMed ID: 27254397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using colloid lithography to fabricate silicon nanopillar arrays on silicon substrates.
    Chen JK; Qui JQ; Fan SK; Kuo SW; Ko FH; Chu CW; Chang FC
    J Colloid Interface Sci; 2012 Feb; 367(1):40-8. PubMed ID: 22104277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of light-extraction nanostructures on sapphire substrates using nanoimprint and ICP etching with different masking materials.
    Chen H; Zhang Q; Chou SY
    Nanotechnology; 2015 Feb; 26(8):085302. PubMed ID: 25648720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering.
    Wang CG; Wu XZ; Di D; Dong PT; Xiao R; Wang SQ
    Nanoscale; 2016 Feb; 8(8):4672-80. PubMed ID: 26853057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend.
    Li Y; Hao Y; Huang C; Chen X; Chen X; Cui Y; Yuan C; Qiu K; Ge H; Chen Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13685-13693. PubMed ID: 28361542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of cubic boron nitride nanocone and nanopillar arrays via reactive ion etching.
    Zou YS; Chong YM; Ji AL; Yang Y; Ye Q; He B; Zhang WJ; Bello I; Lee ST
    Nanotechnology; 2009 Apr; 20(15):155305. PubMed ID: 19420547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reactive Ion Etching of Z-Cut Alpha Quartz for MEMS Resonant Devices Fabrication.
    Li B; Li C; Zhao Y; Han C; Zhang Q
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering with gold-coated silicon nanopillars arrays: The influence of size and spatial order.
    Yue W; Fan Y; Zhang T; Gong T; Long X; Luo Y; Gao P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120582. PubMed ID: 34802929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Si/MoS
    Ko TS; Liu HY; Shieh J; Shieh D; Chen SH; Chen YL; Lin ET
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Wavelength-Dependent SERS Template Based on a Nanopillar Array.
    Li J; Li R; Xu Y; Xue X; Chen X; Chui HC
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.
    Men D; Wu Y; Wang C; Xiang J; Yang G; Wan C; Zhang H
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29401713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure.
    Yang Z; Du K; Wang H; Lu F; Pang Y; Wang J; Gan X; Zhang W; Mei T; Chua SJ
    Nanotechnology; 2019 Feb; 30(7):075204. PubMed ID: 30523947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.