These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35516368)
1. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices. Laref A; Alsagri M; Alahmed ZA; Laref S RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368 [TBL] [Abstract][Full Text] [Related]
3. Phase transitions in two tunnel-coupled HgTe quantum wells: Bilayer graphene analogy and beyond. Krishtopenko SS; Knap W; Teppe F Sci Rep; 2016 Aug; 6():30755. PubMed ID: 27476745 [TBL] [Abstract][Full Text] [Related]
4. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells. Zhang YT; Song J; Sun QF J Phys Condens Matter; 2014 Feb; 26(8):085301. PubMed ID: 24501192 [TBL] [Abstract][Full Text] [Related]
5. Strain Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates. Leubner P; Lunczer L; Brüne C; Buhmann H; Molenkamp LW Phys Rev Lett; 2016 Aug; 117(8):086403. PubMed ID: 27588871 [TBL] [Abstract][Full Text] [Related]
6. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. Luo JW; Zunger A Phys Rev Lett; 2010 Oct; 105(17):176805. PubMed ID: 21231069 [TBL] [Abstract][Full Text] [Related]
7. Effects of stacking periodicity on the electronic and optical properties of GaAs/AlAs superlattice: a first-principles study. Jiang M; Xiao HY; Peng SM; Qiao L; Yang GX; Liu ZJ; Zu XT Sci Rep; 2020 Mar; 10(1):4862. PubMed ID: 32184414 [TBL] [Abstract][Full Text] [Related]
8. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles. Su X; Zhang R; Guo C; Guo M; Ren Z Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949 [TBL] [Abstract][Full Text] [Related]
9. Transport properties of a 1000 nm HgTe film: the interplay of surface and bulk carriers. Savchenko ML; Kozlov DA; Vasilev NN; Mikhailov NN; Dvoretsky SA; Kvon ZD J Phys Condens Matter; 2023 May; 35(34):. PubMed ID: 37187189 [TBL] [Abstract][Full Text] [Related]
10. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields. Zholudev MS; Ikonnikov AV; Teppe F; Orlita M; Maremyanin KV; Spirin KE; Gavrilenko VI; Knap W; Dvoretskiy SA; Mihailov NN Nanoscale Res Lett; 2012 Sep; 7(1):534. PubMed ID: 23013642 [TBL] [Abstract][Full Text] [Related]
11. Optical properties of HgTe/CdTe superlattices in the normal, semimetallic, and inverted-band regimes. Yang Z; Yu Z; Lansari Y; Hwang S; Cook JW; Schetzina JF Phys Rev B Condens Matter; 1994 Mar; 49(12):8096-8108. PubMed ID: 10009574 [No Abstract] [Full Text] [Related]
12. Quantum Hall effect from the topological surface states of strained bulk HgTe. Brüne C; Liu CX; Novik EG; Hankiewicz EM; Buhmann H; Chen YL; Qi XL; Shen ZX; Zhang SC; Molenkamp LW Phys Rev Lett; 2011 Mar; 106(12):126803. PubMed ID: 21517339 [TBL] [Abstract][Full Text] [Related]
13. Selective area epitaxy of in-plane HgTe nanostructures on CdTe(001) substrate. Chaize N; Baudry X; Jouneau PH; Gautier E; Rouvière JL; Deblock Y; Xu J; Berthe M; Barbot C; Grandidier B; Desplanque L; Sellier H; Ballet P Nanotechnology; 2024 Oct; 35(50):. PubMed ID: 39326435 [TBL] [Abstract][Full Text] [Related]
14. Band-gap-dependent electron and hole transport in p-type HgTe-CdTe superlattices. Hoffman CA; Meyer JR; Bartoli FJ; Han JW; Cook JW; Schetzina JF; Schulman JN Phys Rev B Condens Matter; 1989 Mar; 39(8):5208-5221. PubMed ID: 9948911 [No Abstract] [Full Text] [Related]
15. Valence-band-offset controversy in HgTe/CdTe superlattices: A possible resolution. Johnson NF; Hui PM; Ehrenreich H Phys Rev Lett; 1988 Oct; 61(17):1993-1995. PubMed ID: 10038951 [No Abstract] [Full Text] [Related]
16. Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly. Lee T; Enomoto K; Ohshiro K; Inoue D; Kikitsu T; Hyeon-Deuk K; Pu YJ; Kim D Nat Commun; 2020 Oct; 11(1):5471. PubMed ID: 33122641 [TBL] [Abstract][Full Text] [Related]
17. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs) Liu QL; Zhao ZY; Yi JH; Zhang ZY Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917 [TBL] [Abstract][Full Text] [Related]
18. [Study on photoluminescence spectra of Cd(1-x)Mn(x)Te/CdTe diluted semiconductor superlattices with high Mn compositions]. Chen CJ; Wang XZ; Bellani V; Stella A Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):396-8. PubMed ID: 16830738 [TBL] [Abstract][Full Text] [Related]
19. Semi-metals as potential thermoelectric materials. Markov M; Hu X; Liu HC; Liu N; Poon SJ; Esfarjani K; Zebarjadi M Sci Rep; 2018 Jun; 8(1):9876. PubMed ID: 29959341 [TBL] [Abstract][Full Text] [Related]
20. First-principles investigation on the electronic structures of CdSe He X; Li C; Wu L; Hao X; Zhang J; Feng L; Tang P; Du Z RSC Adv; 2022 Aug; 12(34):22188-22196. PubMed ID: 36043063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]