BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35516535)

  • 1. All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures.
    Kwon H; Han DJ; Lee BY
    RSC Adv; 2020 Nov; 10(68):41495-41502. PubMed ID: 35516535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
    Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L
    Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance MnO
    Xu L; Jia M; Li Y; Jin X; Zhang F
    Sci Rep; 2017 Oct; 7(1):12857. PubMed ID: 28993627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors.
    Zhang G; Zhang J; Li W; Wang J; Li X
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34700312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.
    Yu C; Ma P; Zhou X; Wang A; Qian T; Wu S; Chen Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17937-43. PubMed ID: 25247315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.
    Liu Y; Miao X; Fang J; Zhang X; Chen S; Li W; Feng W; Chen Y; Wang W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5251-60. PubMed ID: 26842681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Hierarchically Mesoporous ZnCo
    Moon IK; Yoon S; Oh J
    Chemistry; 2017 Jan; 23(3):597-604. PubMed ID: 27805794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Design of Polypyrrole/Carbon Fiber Electrodes for Efficient Flexible Fiber-Type Solid-State Supercapacitors.
    Sung YS; Lin LY
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method.
    Wang M; Duong le D; Mai NT; Kim S; Kim Y; Seo H; Kim YC; Jang W; Lee Y; Suhr J; Nam JD
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1348-54. PubMed ID: 25545033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors.
    Yang B; Hao C; Wen F; Wang B; Mu C; Xiang J; Li L; Xu B; Zhao Z; Liu Z; Tian Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44478-44484. PubMed ID: 29192760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemically Exfoliated Chlorine-Doped Graphene for Flexible All-Solid-State Micro-Supercapacitors with High Volumetric Energy Density.
    Liu B; Zhang Q; Zhang L; Xu C; Pan Z; Zhou Q; Zhou W; Wang J; Gu L; Liu H
    Adv Mater; 2022 May; 34(19):e2106309. PubMed ID: 35263463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performance.
    Sun P; He W; Yang H; Cao R; Yin J; Wang C; Xu X
    Nanoscale; 2018 Oct; 10(40):19004-19013. PubMed ID: 30198035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snowflake-Like Dendritic CoNi Alloy-rGO Nanocomposite as a Cathode Electrode Material for an All-Solid-State Flexible Asymmetric High-Performance Supercapacitor Device.
    Makkar P; Ghosh NN
    ACS Omega; 2020 May; 5(18):10572-10580. PubMed ID: 32426615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube network film directly grown on carbon cloth for high-performance solid-state flexible supercapacitors.
    Zhou C; Liu J
    Nanotechnology; 2014 Jan; 25(3):035402. PubMed ID: 24356470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.
    Ma J; Liu W; Zhang S; Ma Z; Song P; Yang F; Wang X
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29891767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.