BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35516565)

  • 1. Application and interpretation of deep learning methods for the geographical origin identification of
    Yan T; Duan L; Chen X; Gao P; Xu W
    RSC Adv; 2020 Nov; 10(68):41936-41945. PubMed ID: 35516565
    [No Abstract]   [Full Text] [Related]  

  • 2. Application of Convolutional Neural Network-Based Feature Extraction and Data Fusion for Geographical Origin Identification of Radix Astragali by Visible/Short-Wave Near-Infrared and Near Infrared Hyperspectral Imaging.
    Xiao Q; Bai X; Gao P; He Y
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Near-Infrared Hyperspectral Imaging with Machine Learning Methods to Identify Geographical Origins of Dry Narrow-Leaved Oleaster (
    Gao P; Xu W; Yan T; Zhang C; Lv X; He Y
    Foods; 2019 Nov; 8(12):. PubMed ID: 31783592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning.
    Ye W; Yan T; Zhang C; Duan L; Chen W; Song H; Zhang Y; Xu W; Gao P
    Foods; 2022 May; 11(11):. PubMed ID: 35681359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Fusion of spectrum and image features to identify Glycyrrhizae Radix et Rhizoma from different origins based on hyperspectral imaging technology].
    Yin WJ; Ru CL; Zheng J; Zhang L; Yan JZ; Zhang H
    Zhongguo Zhong Yao Za Zhi; 2021 Feb; 46(4):923-930. PubMed ID: 33645098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of geographical origins of Radix Paeoniae Alba using hyperspectral imaging with deep learning-based fusion approaches.
    Cai Z; Huang Z; He M; Li C; Qi H; Peng J; Zhou F; Zhang C
    Food Chem; 2023 Oct; 422():136169. PubMed ID: 37119596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the geographical origin classification of
    Zhang H; Pan Y; Chen Y; Zhang H; Xie J; Gong X; Zhu J; Yan J
    Analyst; 2024 Mar; 149(6):1837-1848. PubMed ID: 38345564
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning.
    Jin B; Zhang C; Jia L; Tang Q; Gao L; Zhao G; Qi H
    ACS Omega; 2022 Feb; 7(6):4735-4749. PubMed ID: 35187294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application and prospects of hyperspectral imaging and deep learning in traditional Chinese medicine in context of AI and industry 4.0].
    Yi T; Lin C; En-Ci J; Ji-Zhong Y
    Zhongguo Zhong Yao Za Zhi; 2020 Nov; 45(22):5438-5442. PubMed ID: 33350203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning.
    Nguyen C; Sagan V; Maimaitiyiming M; Maimaitijiang M; Bhadra S; Kwasniewski MT
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries.
    Yin W; Zhang C; Zhu H; Zhao Y; He Y
    PLoS One; 2017; 12(7):e0180534. PubMed ID: 28704423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Bacterial Blight Resistant Rice Seeds Using Terahertz Imaging and Hyperspectral Imaging Combined With Convolutional Neural Network.
    Zhang J; Yang Y; Feng X; Xu H; Chen J; He Y
    Front Plant Sci; 2020; 11():821. PubMed ID: 32670316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible/near-infrared hyperspectral imaging combined with machine learning for identification of ten
    Chen Z; Xue X; Wu H; Gao H; Wang G; Ni G; Cao T
    Front Plant Sci; 2024; 15():1413215. PubMed ID: 38882569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Multi-Dimensional Convolutional Neural Network (CNN) With Visualization Method for Detection of
    Yan T; Xu W; Lin J; Duan L; Gao P; Zhang C; Lv X
    Front Plant Sci; 2021; 12():604510. PubMed ID: 33659014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).
    Ru C; Li Z; Tang R
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning.
    Xu P; Sun W; Xu K; Zhang Y; Tan Q; Qing Y; Yang R
    Foods; 2022 Dec; 12(1):. PubMed ID: 36613360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging.
    Zhao HT; Feng YZ; Chen W; Jia GF
    Meat Sci; 2019 May; 151():75-81. PubMed ID: 30716565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.