BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35516778)

  • 1. Visible-light-driven CO
    Secundo F; Amao Y
    RSC Adv; 2020 Nov; 10(69):42354-42362. PubMed ID: 35516778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the functional ionic group of the viologen derivative on visible-light driven CO
    Ikeyama S; Amao Y
    Photochem Photobiol Sci; 2018 Jan; 17(1):60-68. PubMed ID: 29182696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does methylviologen cation radical supply two electrons to the formate dehydrogenase in the catalytic reduction process of CO
    Miyaji A; Amao Y
    Phys Chem Chem Phys; 2020 Sep; 22(33):18595-18605. PubMed ID: 32785412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on CO
    Miyaji A; Amao Y
    Phys Chem Chem Phys; 2020 Dec; 22(46):26987-26994. PubMed ID: 33210103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas.
    Choe H; Joo JC; Cho DH; Kim MH; Lee SH; Jung KD; Kim YH
    PLoS One; 2014; 9(7):e103111. PubMed ID: 25061666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the efficient CO2-reducing activity of an NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA.
    Choe H; Ha JM; Joo JC; Kim H; Yoon HJ; Kim S; Son SH; Gengan RM; Jeon ST; Chang R; Jung KD; Kim YH; Lee HH
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):313-23. PubMed ID: 25664741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-mimetic hydrogen production from polysaccharide using the visible light sensitization of zinc porphyrin.
    Saiki Y; Amao Y
    Biotechnol Bioeng; 2003 Jun; 82(6):710-4. PubMed ID: 12673771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli.
    Kratzer R; Pukl M; Egger S; Nidetzky B
    Microb Cell Fact; 2008 Dec; 7():37. PubMed ID: 19077192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode.
    Zhang L; Liu J; Ong J; Li SF
    Chemosphere; 2016 Nov; 162():228-34. PubMed ID: 27501309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity.
    Hernández-Ibáñez N; Montiel V; Gomis-Berenguer A; Ania C; Iniesta J
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1699-1710. PubMed ID: 33813652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural analysis of wild-type and Val120Thr mutant Candida boidinii formate dehydrogenase by X-ray crystallography.
    Gul M; Yuksel B; Bulut H; DeMirci H
    Acta Crystallogr D Struct Biol; 2023 Nov; 79(Pt 11):1010-1017. PubMed ID: 37860962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.
    Yoshimoto M; Yamashita T; Yamashiro T
    Biotechnol Prog; 2010; 26(4):1047-53. PubMed ID: 20730761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical production of NADH using cobaloxime catalysts and visible-light energy.
    Kim JA; Kim S; Lee J; Baeg JO; Kim J
    Inorg Chem; 2012 Aug; 51(15):8057-63. PubMed ID: 22835088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solar-Driven Reduction of Carbon Dioxide.
    Miller M; Robinson WE; Oliveira AR; Heidary N; Kornienko N; Warnan J; Pereira IAC; Reisner E
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4601-4605. PubMed ID: 30724432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii.
    Abdellaoui S; Seow Chavez M; Matanovic I; Stephens AR; Atanassov P; Minteer SD
    Chem Commun (Camb); 2017 May; 53(39):5368-5371. PubMed ID: 28421214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging liquid-liquid phase separation and volume modulation to regulate the enzymatic activity of formate dehydrogenase.
    Ostermeier L; Ascani M; Gajardo-Parra N; Sadowski G; Held C; Winter R
    Biophys Chem; 2024 Jan; 304():107128. PubMed ID: 37922819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon.
    Hernández-Ibáñez N; Gomis-Berenguer A; Montiel V; Ania CO; Iniesta J
    Chemosphere; 2022 Mar; 291(Pt 3):133117. PubMed ID: 34861253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected Roles of Triethanolamine in the Photochemical Reduction of CO
    Sampaio RN; Grills DC; Polyansky DE; Szalda DJ; Fujita E
    J Am Chem Soc; 2020 Feb; 142(5):2413-2428. PubMed ID: 31881154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a dye molecule-biocatalyst hybrid system with visible-light induced carbon-carbon bond formation from CO
    Amao Y; Ikeyama S; Katagiri T; Fujita K
    Faraday Discuss; 2017 Jun; 198():73-81. PubMed ID: 28276560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.