These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35516858)

  • 1. Few-walled carbon nanotube-enhanced activated carbon supercapacitor performance in organic electrolyte at 4 V.
    Li J; Xu Z
    RSC Adv; 2019 Jun; 9(33):18863-18867. PubMed ID: 35516858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.
    Izadi-Najafabadi A; Yamada T; Futaba DN; Yudasaka M; Takagi H; Hatori H; Iijima S; Hata K
    ACS Nano; 2011 Feb; 5(2):811-9. PubMed ID: 21210712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V.
    Cui C; Qian W; Yu Y; Kong C; Yu B; Xiang L; Wei F
    J Am Chem Soc; 2014 Feb; 136(6):2256-9. PubMed ID: 24490623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte.
    Kong C; Qian W; Zheng C; Yu Y; Cui C; Wei F
    Chem Commun (Camb); 2013 Nov; 49(91):10727-9. PubMed ID: 24104401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. V
    Sun G; Ren H; Shi Z; Zhang L; Wang Z; Zhan K; Yan Y; Yang J; Zhao B
    J Colloid Interface Sci; 2021 Apr; 588():847-856. PubMed ID: 33309246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
    Dai CS; Chien PY; Lin JY; Chou SW; Wu WK; Li PH; Wu KY; Lin TW
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12168-74. PubMed ID: 24191729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.
    Liu Y; Li G; Guo Y; Ying Y; Peng X
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14043-14050. PubMed ID: 28387503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.
    Ujjain SK; Bhatia R; Ahuja P; Attri P
    PLoS One; 2015; 10(7):e0131475. PubMed ID: 26153688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-standing interconnected carbon nanofiber electrodes: new structural designs for supercapacitor application.
    El-Shafei MH; Hassanin AH; Shaalan NM; Sharshar T; El-Moneim AA
    Nanotechnology; 2020 May; 31(18):185403. PubMed ID: 31952052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
    Yang S; Zhang K
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core-Shell Hybrid for High-Performance Flexible Supercapacitors.
    Yesi Y; Shown I; Ganguly A; Ngo TT; Chen LC; Chen KH
    ChemSusChem; 2016 Feb; 9(4):370-8. PubMed ID: 26791424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.
    Hao P; Tian J; Sang Y; Tuan CC; Cui G; Shi X; Wong CP; Tang B; Liu H
    Nanoscale; 2016 Sep; 8(36):16292-16301. PubMed ID: 27714086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy storage performance of 2D MoS
    Radhakrishnan S; K A SR; Kumar SR; Johari P; Rout CS
    Nanotechnology; 2021 Apr; 32(15):155403. PubMed ID: 33271528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Quasi-Solid-State Asymmetric Supercapacitors Based on MoS
    Cheng B; Cheng R; Tan F; Liu X; Huo J; Yue G
    Nanoscale Res Lett; 2019 Feb; 14(1):66. PubMed ID: 30806819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors.
    Wu W; Wang X; Deng Y; Zhou C; Wang Z; Zhang M; Li X; Wu Y; Luo Y; Chen D
    Nanoscale; 2020 Sep; 12(34):17738-17745. PubMed ID: 32820759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of multi-walled carbon nanotubes and conducting polymer on capacitance of mesoporous carbon electrode.
    Wang A; Cheng Y; Zhang H; Hou Y; Wang Y; Liu J
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7015-21. PubMed ID: 25924364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor.
    Wu S; Hui KS; Hui KN; Kim KH
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1395-1406. PubMed ID: 27936540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.