These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35516858)

  • 41. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg
    Li N; Du Y; Feng QP; Huang GW; Xiao HM; Fu SY
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44828-44838. PubMed ID: 29200256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor.
    Ghosh A; Le VT; Bae JJ; Lee YH
    Sci Rep; 2013 Oct; 3():2939. PubMed ID: 24145831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of the electrodeposition process of a polypyrrole/multi-walled carbon nanotube fiber electrode for a flexible supercapacitor.
    Ping Z; Junjie L; Yunchun L
    RSC Adv; 2022 Jun; 12(28):18134-18143. PubMed ID: 35800315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly-N-phenylethanolamine for High-Performance Supercapacitor.
    Wei X; Wan S; Jiang X; Wang Z; Gao S
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22238-45. PubMed ID: 26394705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. All-nanotube stretchable supercapacitor with low equivalent series resistance.
    Gilshteyn EP; Amanbayev D; Anisimov AS; Kallio T; Nasibulin AG
    Sci Rep; 2017 Dec; 7(1):17449. PubMed ID: 29234105
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of carbon shell structure on electrochemical performance of multi-walled carbon nanotube electrodes.
    Kim KS; Park SJ
    Anal Chim Acta; 2013 Jul; 788():17-23. PubMed ID: 23845476
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.
    Park J; Kim B; Yoo YE; Chung H; Kim W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.
    Shi P; Li L; Hua L; Qian Q; Wang P; Zhou J; Sun G; Huang W
    ACS Nano; 2017 Jan; 11(1):444-452. PubMed ID: 28027441
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon nanotubes for supercapacitor.
    Pan H; Li J; Feng Y
    Nanoscale Res Lett; 2010 Jan; 5(3):654-68. PubMed ID: 20672061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode.
    Li Y; Wei Q; Wang R; Zhao J; Quan Z; Zhan T; Li D; Xu J; Teng H; Hou W
    J Colloid Interface Sci; 2020 Jun; 570():286-299. PubMed ID: 32163790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Millerite Core-Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage.
    Tiruneh SN; Kang BK; Choi HW; Kwon SB; Kim MS; Yoon DH
    Small; 2018 Oct; 14(41):e1802933. PubMed ID: 30216668
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between Viscosity, Microstructure and Electrical Conductivity in Copolyamide Hot Melt Adhesives Containing Carbon Nanotubes.
    Latko-Durałek P; Kozera R; Macutkevič J; Dydek K; Boczkowska A
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050247
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Supercapacitor Performance of Nickel-Cobalt Sulfide Nanotubes Decorated Using Ni Co-Layered Double Hydroxide Nanosheets Grown in Situ on Ni Foam.
    Xin C; Ang L; Musharavati F; Jaber F; Hui L; Zalnezhad E; Bae S; Hui KS; Hui KN
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32210107
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced electrochemical behaviors of carbon felt electrode using redox-active electrolyte for all-solid-state supercapacitors.
    Chen L; Wu C; Qin W; Wang X; Jia C
    J Colloid Interface Sci; 2020 Oct; 577():12-18. PubMed ID: 32470700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors.
    Kim H; Prasad Tiwari A; Mukhiya T; Kim HY
    J Colloid Interface Sci; 2021 Oct; 600():740-751. PubMed ID: 34052529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfur Doping: Unique Strategy To Improve the Supercapacitive Performance of Carbon Nano-onions.
    Mohapatra D; Dhakal G; Sayed MS; Subramanya B; Shim JJ; Parida S
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8040-8050. PubMed ID: 30714716
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.