These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35517347)

  • 1. Electromagnetic and microwave absorption properties of iron pentacarbonyl pyrolysis-synthesized carbonyl iron fibers.
    Ge C; Wang L; Liu G; Xu K; Wang L; Zhang L; He X
    RSC Adv; 2020 Jun; 10(40):23702-23711. PubMed ID: 35517347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating carbonyl iron with sponge to enable lightweight and dual-frequency absorption.
    Quan B; Gu W; Chen J; Xu G; Ji G
    Nanotechnology; 2019 May; 30(19):195703. PubMed ID: 30673642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excellent microwave absorption performances of high length-diameter ratio iron nanowires with low filling ratio.
    Yang PA; Ruan H; Sun Y; Li R; Lu Y; Xiang C
    Nanotechnology; 2020 Sep; 31(39):395708. PubMed ID: 32544893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave Absorption Properties of Carbon Black-Carbonyl Iron/Polylactic Acid Composite Filament for Fused Deposition Modeling.
    Wang F; Zhou Q; Zhang Z; Gu Y; Zhang J; Jiang K
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of sandwich-like Co
    Bao S; Tang W; Song Z; Jiang Q; Jiang Z; Xie Z
    Nanoscale; 2020 Sep; 12(36):18790-18799. PubMed ID: 32970071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption.
    Guo Z; Ren P; Zhang F; Duan H; Chen Z; Jin Y; Ren F; Li Z
    J Colloid Interface Sci; 2022 Mar; 610():1077-1087. PubMed ID: 34887064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Electromagnetic and Microwave Absorption Properties of Magnetic FeNi
    Zheng Y; Wu M; Qian C; Jin Y; Xiao W; Liang X
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yolk-shell structured Co@SiO
    Wang B; Wu Q; Fu Y; Liu T
    J Colloid Interface Sci; 2021 Jul; 594():342-351. PubMed ID: 33773386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing interpenetrating structured NiCo
    Wu Y; Tian K; Shu R; Zhu J; Liu Y; Zhang C; Huang Y; Chen Z
    J Colloid Interface Sci; 2022 Jun; 616():44-54. PubMed ID: 35189503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-layer structure microwave absorbers based on nanocrystalline alpha-Fe, Fe0.2(Co0.2Ni0.8)0.8 and Ni0.5Zn0.5Fe2O4 porous microfibers.
    Liu H; Meng X; Yang X; Jing M; Shen X; Dong M
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2878-84. PubMed ID: 24734704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave Absorption Properties of Multi-Walled Carbon Nanotubes/Carbonyl Iron Particles/Polyurethane Foams.
    Huang X; Yu D; Wang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rational route towards dual wave-transparent type of carbonyl iron@SiO
    Zhang N; Wang Y; Chen P; Chen W
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):84-95. PubMed ID: 32771752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band.
    Zhu YX; Wang SF; Zhang YS; Wu ZG; Zhong B; Li DR; Wang FY; Feng JJ; Tang J; Zhuo RF; Yan PX
    Sci Rep; 2021 Jan; 11(1):2171. PubMed ID: 33500514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of N, S-codoped honeycomb-like C/Ni
    Wang L; Bai X; Zhao T; Lin Y
    J Colloid Interface Sci; 2020 Nov; 580():126-134. PubMed ID: 32683111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of ZnFe
    Liao Z; Ma M; Tong Z; Wang R; Bi Y; Chen Y; Chung KL; Ma Y
    J Colloid Interface Sci; 2021 Nov; 602():602-611. PubMed ID: 34146948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Hollow Fiber-Derived Carbon Microtube with Broadband Microwave Attenuation Capacity.
    Zhao Y; Long A; Zhao P; Liao L; Wang R; Li G; Wang B; Liao X; Yu R; Liao J
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave properties of the single-layer periodic structure composites composed of ethylene-vinyl acetate and polycrystalline iron fibers.
    Guo Z; Huang H; Xie D; Xia H
    Sci Rep; 2017 Sep; 7(1):11331. PubMed ID: 28900262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of one-dimensional M (Co, Ni)@polyaniline nanochains with adjustable thickness for excellent microwave absorption properties.
    Dai B; Ma Y; Feng S; Wang H; Ma M; Ding J; Yin X; Li T
    J Colloid Interface Sci; 2022 Dec; 627():113-125. PubMed ID: 35842962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.