These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35517433)

  • 1. Transformation of remnant algal biomass to 5-HMF and levulinic acid: influence of a biphasic solvent system.
    Rihko-Struckmann LK; Oluyinka O; Sahni A; McBride K; Fachet M; Ludwig K; Sundmacher K
    RSC Adv; 2020 Jun; 10(42):24753-24763. PubMed ID: 35517433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of 5-Hydroxymethylfurfural and Furfural in Aqueous Biphasic Systems: A COSMO-RS Guided Approach to Greener Solvent Selection.
    Soukup-Carne D; López-Porfiri P; Bragagnolo FS; Funari CS; Fan X; González-Miquel M; Esteban J
    ACS Sustain Chem Eng; 2024 Mar; 12(9):3766-3779. PubMed ID: 38456191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Yield and High-Efficiency Conversion of HMF to Levulinic Acid in a Green and Facile Catalytic Process by a Dual-Function Brønsted-Lewis Acid HScCl
    Liu S; Cheng X; Sun S; Chen Y; Bian B; Liu Y; Tong L; Yu H; Ni Y; Yu S
    ACS Omega; 2021 Jun; 6(24):15940-15947. PubMed ID: 34179638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor.
    Tongtummachat T; Akkarawatkhoosith N; Kaewchada A; Jaree A
    Front Chem; 2019; 7():951. PubMed ID: 32039159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-HMF production from glucose using ion exchange resin and alumina as a dual catalyst in a biphasic system.
    Pumrod S; Kaewchada A; Roddecha S; Jaree A
    RSC Adv; 2020 Mar; 10(16):9492-9498. PubMed ID: 35497197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Metal-Loaded ZSM-5 Zeolite Catalyst and Its Catalytic Effect on HMF Production from Biomass.
    Hoang PH; Cuong TD
    Appl Biochem Biotechnol; 2022 Nov; 194(11):4985-4998. PubMed ID: 35679014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Furfural and 5-Hydroxymethylfurfural Production from Sugar Mixture Using Deep Eutectic Solvent/MIBK System.
    Rusanen A; Lappalainen K; Kärkkäinen J; Lassi U
    ChemistryOpen; 2021 Oct; 10(10):1004-1012. PubMed ID: 34617679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste.
    Yu IKM; Tsang DCW; Chen SS; Wang L; Hunt AJ; Sherwood J; De Oliveira Vigier K; Jérôme F; Ok YS; Poon CS
    Bioresour Technol; 2017 Dec; 245(Pt A):456-462. PubMed ID: 28898844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of furans from rice straw by single-phase and biphasic systems.
    Amiri H; Karimi K; Roodpeyma S
    Carbohydr Res; 2010 Oct; 345(15):2133-8. PubMed ID: 20832775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Roles of H
    Li J; Zhang W; Xu S; Hu C
    Front Chem; 2020; 8():70. PubMed ID: 32117893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. InCl3-catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system.
    Shen Y; Sun J; Yi Y; Li M; Wang B; Xu F; Sun R
    Bioresour Technol; 2014 Nov; 172():457-460. PubMed ID: 25304730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Corn Stover into Furan Aldehydes by One-Pot Reaction with Acidic Lithium Bromide Solution.
    Gao M; Xin Q; Sun W; Xiao J; Lu X
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Materials as Phase-Transfer Promoters for Obtaining 5-Hydroxymethylfurfural from Cellulose in a Biphasic System.
    Faba L; Garcés D; Díaz E; Ordóñez S
    ChemSusChem; 2019 Aug; 12(16):3769-3777. PubMed ID: 31240829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems.
    Chen G; Sun Q; Xu J; Zheng L; Rong J; Zong B
    ACS Omega; 2021 Mar; 6(10):6798-6809. PubMed ID: 33748593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Extraction of Fermentation Inhibitors by Means of Green Hydrophobic Deep Eutectic Solvents.
    Makoś-Chełstowska P; Słupek E; Kucharska K; Kramarz A; Gębicki J
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous-Natural Deep Eutectic Solvent-Enhanced 5-Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes.
    Zuo M; Wang X; Wang Q; Zeng X; Lin L
    ChemSusChem; 2022 Jul; 15(13):e202101889. PubMed ID: 34730878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formation of 5-hydroxymethylfurfural and hydrochar during the valorization of biomass using a microwave hydrothermal method.
    Shao Y; Lu W; Meng Y; Zhou D; Zhou Y; Shen D; Long Y
    Sci Total Environ; 2021 Feb; 755(Pt 1):142499. PubMed ID: 33039887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract.
    Kholiya F; Rathod MR; Gangapur DR; Adimurthy S; Meena R
    Carbohydr Res; 2020 Apr; 490():107953. PubMed ID: 32146239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.
    Weingarten R; Cho J; Xing R; Conner WC; Huber GW
    ChemSusChem; 2012 Jul; 5(7):1280-90. PubMed ID: 22696262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Production of 5-Hydroxymethylfurfural via Catalytic Conversion of Simple and Complex Sugars over Phosphated TiO2.
    Atanda L; Shrotri A; Mukundan S; Ma Q; Konarova M; Beltramini J
    ChemSusChem; 2015 Sep; 8(17):2907-16. PubMed ID: 26238933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.