These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35517713)
1. Near-Infrared Fluorescence Imaging of EGFR-Overexpressing Tumors in the Mouse Xenograft Model Using scFv-IRDye800CW and Cetuximab-IRDye800CW. Amini A; Safdari Y; Tash Shamsabadi F Mol Imaging; 2022; 2022():9589820. PubMed ID: 35517713 [TBL] [Abstract][Full Text] [Related]
2. Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Day KE; Sweeny L; Kulbersh B; Zinn KR; Rosenthal EL Mol Imaging Biol; 2013 Dec; 15(6):722-9. PubMed ID: 23715932 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Warram JM; de Boer E; Korb M; Hartman Y; Kovar J; Markert JM; Gillespie GY; Rosenthal EL Br J Neurosurg; 2015; 29(6):850-8. PubMed ID: 26073144 [TBL] [Abstract][Full Text] [Related]
4. Near infrared imaging of epidermal growth factor receptor positive xenografts in mice with domain I/II specific antibody fragments. Bernhard W; El-Sayed A; Barreto K; Gonzalez C; Fonge H; Geyer CR Theranostics; 2019; 9(4):974-985. PubMed ID: 30867810 [TBL] [Abstract][Full Text] [Related]
5. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells. Banisadr A; Safdari Y; Kianmehr A; Pourafshar M Hum Vaccin Immunother; 2018 Apr; 14(4):856-863. PubMed ID: 29185855 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. El-Sayed A; Bernhard W; Barreto K; Gonzalez C; Hill W; Pastushok L; Fonge H; Geyer CR Theranostics; 2018; 8(17):4856-4869. PubMed ID: 30279742 [No Abstract] [Full Text] [Related]
7. NIR-II Navigation with an EGFR-Targeted Probe Improves Imaging Resolution and Sensitivity of Detecting Micrometastases in Esophageal Squamous Cell Carcinoma Xenograft Models. Wang L; Liang M; Xiao Y; Chen J; Mei C; Lin Y; Zhang Y; Li D Mol Pharm; 2022 Oct; 19(10):3563-3575. PubMed ID: 35420035 [TBL] [Abstract][Full Text] [Related]
8. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004 [TBL] [Abstract][Full Text] [Related]
9. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery. Saccomano M; Dullin C; Alves F; Napp J Int J Cancer; 2016 Nov; 139(10):2277-89. PubMed ID: 27428782 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the detection threshold for optical imaging in surgical oncology. Prince AC; Jani A; Korb M; Tipirneni KE; Kasten BB; Rosenthal EL; Warram JM J Surg Oncol; 2017 Dec; 116(7):898-906. PubMed ID: 28628728 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody-Labeled Near-Infrared Fluorophore. Pal R; Kang H; Choi HS; Kumar ATN Clin Cancer Res; 2019 Nov; 25(22):6653-6661. PubMed ID: 31481509 [TBL] [Abstract][Full Text] [Related]
12. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. van Driel PB; van der Vorst JR; Verbeek FP; Oliveira S; Snoeks TJ; Keereweer S; Chan B; Boonstra MC; Frangioni JV; van Bergen en Henegouwen PM; Vahrmeijer AL; Lowik CW Int J Cancer; 2014 Jun; 134(11):2663-73. PubMed ID: 24222574 [TBL] [Abstract][Full Text] [Related]
13. In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. Yang K; Zhang FJ; Tang H; Zhao C; Cao YA; Lv XQ; Chen D; Li YD Int J Nanomedicine; 2011; 6():1739-45. PubMed ID: 21980236 [TBL] [Abstract][Full Text] [Related]
14. Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy. Tseng SH; Chou MY; Chu IM Int J Nanomedicine; 2015; 10():3663-85. PubMed ID: 26056447 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of cetuximab-conjugated poly(γ-glutamic acid)-docetaxel nanomedicines in EGFR-overexpressing gastric cancer xenografts. Sreeranganathan M; Uthaman S; Sarmento B; Mohan CG; Park IK; Jayakumar R Int J Nanomedicine; 2017; 12():7165-7182. PubMed ID: 29033568 [TBL] [Abstract][Full Text] [Related]
17. Sym004, a novel EGFR antibody mixture, can overcome acquired resistance to cetuximab. Iida M; Brand TM; Starr MM; Li C; Huppert EJ; Luthar N; Pedersen MW; Horak ID; Kragh M; Wheeler DL Neoplasia; 2013 Oct; 15(10):1196-206. PubMed ID: 24204198 [TBL] [Abstract][Full Text] [Related]
18. Zwitterionic near-infrared fluorophore-conjugated epidermal growth factor for fast, real-time, and target-cell-specific cancer imaging. Kim H; Cho MH; Choi HS; Lee BI; Choi Y Theranostics; 2019; 9(4):1085-1095. PubMed ID: 30867817 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and Characterization of Cetuximab-Docetaxel and Panitumumab-Docetaxel Antibody-Drug Conjugates for EGFR-Overexpressing Cancer Therapy. Glatt DM; Beckford Vera DR; Prabhu SS; Mumper RJ; Luft JC; Benhabbour SR; Parrott MC Mol Pharm; 2018 Nov; 15(11):5089-5102. PubMed ID: 30226780 [TBL] [Abstract][Full Text] [Related]