BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35517736)

  • 1. The selective laser sintering of a polyamide 11/BaTiO
    Jin Y; Chen N; Li Y; Wang Q
    RSC Adv; 2020 May; 10(35):20405-20413. PubMed ID: 35517736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile preparation of high loading filled PVDF/BaTiO
    Song S; Li Y; Wang Q; Zhang C
    RSC Adv; 2021 Nov; 11(60):37923-37931. PubMed ID: 35498085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of PVDF/BaTiO
    Yang C; Song S; Chen F; Chen N
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41723-41734. PubMed ID: 34431292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology.
    Yang C; Chen F; Sun J; Chen N
    ACS Omega; 2021 Nov; 6(45):30769-30778. PubMed ID: 34805705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling selective laser sintering and supercritical CO
    Yang C; Chen N; Liu X; Wang Q; Zhang C
    RSC Adv; 2021 Jun; 11(34):20662-20669. PubMed ID: 35479375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fabrication and Characterization of BaTiO
    Smirnov A; Chugunov S; Kholodkova A; Isachenkov M; Tikhonov A; Dubinin O; Shishkovsky I
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Flexible BaTiO
    Wei X; Xu K; Wang Y; Zhang Z; Chen Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11740-11748. PubMed ID: 38394674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing core-shell structured BaTiO
    Qi F; Zeng Z; Yao J; Cai W; Zhao Z; Peng S; Shuai C
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112129. PubMed ID: 34082946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes.
    Yan J; Jeong YG
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15700-9. PubMed ID: 27237223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printing Piezoelectric Composite with Honeycomb Structure for Ultrasonic Devices.
    Zeng Y; Jiang L; Sun Y; Yang Y; Quan Y; Wei S; Lu G; Li R; Rong J; Chen Y; Zhou Q
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32717887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Piezoelectric Nanogenerators with Imprinted P(VDF-TrFE)/BaTiO
    Chen X; Li X; Shao J; An N; Tian H; Wang C; Han T; Wang L; Lu B
    Small; 2017 Jun; 13(23):. PubMed ID: 28452402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO
    Jiang J; Tu S; Fu R; Li J; Hu F; Yan B; Gu Y; Chen S
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33989-33998. PubMed ID: 32610011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold.
    Yang Y; Peng S; Qi F; Zan J; Liu G; Zhao Z; Shuai C
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111195. PubMed ID: 32806327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-cellulose/PDMS nanocomposite: a flexible dielectric material for harvesting mechanical energy.
    Pusty M; Shirage PM
    RSC Adv; 2020 Mar; 10(17):10097-10112. PubMed ID: 35498576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor.
    Song L; Huang Z; Guo S; Li Y; Wang Q
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37252-37261. PubMed ID: 34318675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printed Piezoelectric Stents for Electricity Generation Driven by Pressure Fluctuation.
    Pan F; Sui J; Silva-Pedraza Z; Bontekoe J; Carlos CR; Wu G; Liu W; Gao J; Liu B; Wang X
    ACS Appl Mater Interfaces; 2024 May; 16(21):27705-27713. PubMed ID: 38748054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications.
    Oh Y; Noh J; Yoo J; Kang J; Hwang L; Hong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1860-6. PubMed ID: 21937318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Flexible Poly(vinylidene fluoride-trifluorethylene) Piezoelectric Nanogenerators by SnSe Nanosheet Doping and Solvent Treatment.
    Zhai W; Nie J; Zhu L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32278-32285. PubMed ID: 34190532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Piezoelectric Resonators Based on Graphene and Free-Standing Single-Crystal BaTiO
    Lee M; Renshof JR; van Zeggeren KJ; Houmes MJA; Lesne E; Šiškins M; van Thiel TC; Guis RH; van Blankenstein MR; Verbiest GJ; Caviglia AD; van der Zant HSJ; Steeneken PG
    Adv Mater; 2022 Nov; 34(44):e2204630. PubMed ID: 36039705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.