These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35518045)

  • 1. Integrated process for the recovery of yttrium and europium from CRT phosphor waste.
    Forte F; Yurramendi L; Aldana JL; Onghena B; Binnemans K
    RSC Adv; 2019 Jan; 9(3):1378-1386. PubMed ID: 35518045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of rare earth Eu from waste blue phosphor strengthened by microwave alkali roasting.
    Liu C; Luo W; Li Y; Wang Z; Xu S; Wang X
    J Environ Manage; 2024 Jun; 362():121303. PubMed ID: 38824885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.
    Innocenzi V; De Michelis I; Ferella F; Beolchini F; Kopacek B; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2364-71. PubMed ID: 23910246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride.
    Pateli IM; Abbott AP; Binnemans K; Rodriguez Rodriguez N
    RSC Adv; 2020 Aug; 10(48):28879-28890. PubMed ID: 35520061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.
    Liu H; Zhang S; Pan D; Tian J; Yang M; Wu M; Volinsky AA
    J Hazard Mater; 2014 May; 272():96-101. PubMed ID: 24681591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of rare earths from the green lamp phosphor LaPO
    Gijsemans L; Forte F; Onghena B; Binnemans K
    RSC Adv; 2018 Jul; 8(46):26349-26355. PubMed ID: 35541950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids.
    Banda R; Forte F; Onghena B; Binnemans K
    RSC Adv; 2019 Feb; 9(9):4876-4883. PubMed ID: 35514665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.
    Innocenzi V; De Michelis I; Ferella F; Vegliò F
    Waste Manag; 2013 Nov; 33(11):2390-6. PubMed ID: 23831004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.
    Hu AH; Kuo CH; Huang LH; Su CC
    Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A promising RVO4:Eu(3+), Li(+)@SiO2 (R = Gd, Y and Gd/Y) red-emitting phosphor with improved luminescence (cd/m(2)) and colour purity for optical display applications.
    Rambabu U; Munirathnam NR; Reddy BS; Chatterjee S
    Luminescence; 2016 Feb; 31(1):141-51. PubMed ID: 25989734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder.
    Hopfe S; Konsulke S; Barthen R; Lehmann F; Kutschke S; Pollmann K
    Waste Manag; 2018 Sep; 79():554-563. PubMed ID: 30343787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid state diffusion and amalgamating anionic exchange at a KNaSO
    Duragkar A; Dhoble NS; Kohale RL; Dhoble SJ
    Luminescence; 2021 Aug; 36(5):1159-1171. PubMed ID: 33683003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical recovery of europium from non-aqueous solutions.
    Van den Bogaert B; Gheeraert L; Leblebici ME; Binnemans K; Van Gerven T
    Phys Chem Chem Phys; 2016 Nov; 18(43):29961-29968. PubMed ID: 27762409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-concentration quenching: a novel Eu
    Rajendran M; Vaidyanathan S
    Dalton Trans; 2020 Jul; 49(27):9239-9253. PubMed ID: 32510542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Europium-activated phosphors for use in X-ray detectors of medical imaging systems.
    Kandarakis I; Cavouras D; Panayiotakis GS; Triantis D; Nomicos CD
    Eur Radiol; 1998; 8(2):313-8. PubMed ID: 9477290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.