These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35518157)

  • 1. 1,4-Dithiolbenzene, 1,4-dimethanediolbenzene and 4-thioacetylbiphenyl molecular systems: electronic devices with possible applications in molecular electronics.
    Ojeda JH; Piracón Muñoz LK; Guerra Pinzón JA; Gómez Castaño JA
    RSC Adv; 2020 Aug; 10(53):32127-32136. PubMed ID: 35518157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current's Fluctuations through Molecular Wires Composed of Thiophene Rings.
    Ojeda Silva JH; Cortés Peñaranda JC; Gómez Castaño JA; Duque CA
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29641471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current density analysis of electron transport through molecular wires in open quantum systems.
    Nozaki D; Schmidt WG
    J Comput Chem; 2017 Jul; 38(19):1685-1692. PubMed ID: 28480601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo-Electrical Conduction of the 2,7-Di([1,1'-Biphenyl]-4-yl)-9H-Fluorene Molecular System: Coupling between Benzene Rings and Stereoelectronic Effects.
    Ojeda Silva JH; Paez Barbosa JS; Duque Echeverri CA
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32674464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic noise due to temperature differences in atomic-scale junctions.
    Lumbroso OS; Simine L; Nitzan A; Segal D; Tal O
    Nature; 2018 Oct; 562(7726):240-244. PubMed ID: 30305745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Hermitian Hamiltonians and Quantum Transport in Multi-Terminal Conductors.
    Shubin NM; Gorbatsevich AA; Krasnikov GY
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum transport along the armchair and zigzag edges of β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties of two finite armchair graphene nanoribbons.
    Rosales L; González JW
    Nanoscale Res Lett; 2013 Jan; 8(1):1. PubMed ID: 23279756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic molecules as spintronic devices.
    Ojeda JH; Orellana PA; Laroze D
    J Chem Phys; 2014 Mar; 140(10):104308. PubMed ID: 24628170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tight-binding Hamiltonian considering up to the third nearest neighbours for trans polyacetylene.
    Keshtan MAM; Esmaeilzadeh M
    J Phys Condens Matter; 2020 Jul; 32(28):285401. PubMed ID: 32155603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current-induced forces in single-resonance systems.
    Deghi SE; Fernández-Alcázar LJ; Pastawski HM; Bustos-Marún RA
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green's function formalism coupled with Gaussian broadening of discrete states for quantum transport: application to atomic and molecular wires.
    Tada T; Kondo M; Yoshizawa K
    J Chem Phys; 2004 Oct; 121(16):8050-7. PubMed ID: 15485269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gas flow on electronic transport in a DNA-decorated carbon nanotube.
    Poonam P; Deo N
    Nanotechnology; 2011 May; 22(20):205201. PubMed ID: 21444964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study of molecular conduction. II. A Hartree-Fock approach to transmission probability.
    Shimazaki T; Maruyama H; Asai Y; Yamashita K
    J Chem Phys; 2005 Oct; 123(16):164111. PubMed ID: 16268685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SymGF: a symbolic tool for quantum transport analysis and its application to a double quantum dot system.
    Feng Z; Sun QF; Wan L; Guo H
    J Phys Condens Matter; 2011 Oct; 23(41):415301. PubMed ID: 21952489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An orbital rule for electron transport in molecules.
    Yoshizawa K
    Acc Chem Res; 2012 Sep; 45(9):1612-21. PubMed ID: 22698647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking the performance of density functional theory based Green's function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems.
    Prociuk A; Van Kuiken B; Dunietz BD
    J Chem Phys; 2006 Nov; 125(20):204717. PubMed ID: 17144733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring connections between statistical mechanics and Green's functions for realistic systems: Temperature dependent electronic entropy and internal energy from a self-consistent second-order Green's function.
    Welden AR; Rusakov AA; Zgid D
    J Chem Phys; 2016 Nov; 145(20):204106. PubMed ID: 27908130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.