These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35518286)

  • 1. A gradient screening approach for retired lithium-ion batteries based on X-ray computed tomography images.
    Ran A; Chen S; Zhang S; Liu S; Zhou Z; Nie P; Qian K; Fang L; Zhao SX; Li B; Kang F; Zhou X; Sun H; Zhang X; Wei G
    RSC Adv; 2020 May; 10(32):19117-19123. PubMed ID: 35518286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications.
    Lv Y; Luo W; Mo Y; Zhang G
    RSC Adv; 2022 May; 12(22):14127-14136. PubMed ID: 35558830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacity detection of electric vehicle lithium-ion batteries based on X-ray computed tomography.
    Li L; Hou J
    RSC Adv; 2018 Jul; 8(45):25325-25333. PubMed ID: 35539789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray Nano-computed Tomography of Electrochemical Conversion in Lithium-ion Battery.
    Di Lecce D; Levchenko S; Iacoviello F; Brett DJL; Shearing PR; Hassoun J
    ChemSusChem; 2019 Aug; 12(15):3550-3561. PubMed ID: 31169357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-life battery systems for affordable energy access in Kenyan primary schools.
    Kebir N; Leonard A; Downey M; Jones B; Rabie K; Bhagavathy SM; Hirmer SA
    Sci Rep; 2023 Jan; 13(1):1374. PubMed ID: 36697469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A degradation-based sorting method for lithium-ion battery reuse.
    Chen H; Shen J
    PLoS One; 2017; 12(10):e0185922. PubMed ID: 29023485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-Use of Seawater Batteries for Energy Storage and Water Desalination.
    Arnold S; Wang L; Presser V
    Small; 2022 Oct; 18(43):e2107913. PubMed ID: 36045423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Restoration of Battery Materials Guided by Synchrotron Radiation Technology for Sustainable Lithium-Ion Batteries.
    Wang L; Shen Y; Liu Y; Zeng P; Meng J; Liu T; Zhang L
    Small Methods; 2023 Sep; 7(9):e2201658. PubMed ID: 37199184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation Mechanism Study and Safety Hazard Analysis of Overdischarge on Commercialized Lithium-ion Batteries.
    Ma T; Wu S; Wang F; Lacap J; Lin C; Liu S; Wei M; Hao W; Wang Y; Park JW
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56086-56094. PubMed ID: 33259203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.