These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35518308)

  • 21. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring.
    Wu CC; Chuang WY; Wu CD; Su YC; Huang YY; Huang YJ; Peng SY; Yu SA; Lin CT; Lu SS
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28353680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.
    Yu G; Hu J; Tan J; Gao Y; Lu Y; Xuan F
    Nanotechnology; 2018 Mar; 29(11):115502. PubMed ID: 29339577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Low-Cost and Highly Sensitive Graphene-Based Pressure Sensors by Direct Laser Scribing Polydimethylsiloxane.
    Zhu Y; Cai H; Ding H; Pan N; Wang X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6195-6200. PubMed ID: 30666869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast-response humidity sensor based on laser printing for respiration monitoring.
    Wang G; Zhang Y; Yang H; Wang W; Dai YZ; Niu LG; Lv C; Xia H; Liu T
    RSC Adv; 2020 Feb; 10(15):8910-8916. PubMed ID: 35496566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose Nanofiber/Carbon Nanotube Dual Network-Enabled Humidity Sensor with High Sensitivity and Durability.
    Zhu P; Ou H; Kuang Y; Hao L; Diao J; Chen G
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33229-33238. PubMed ID: 32608963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ultrafast-response and flexible humidity sensor for human respiration monitoring and noncontact safety warning.
    Wang X; Deng Y; Chen X; Jiang P; Cheung YK; Yu H
    Microsyst Nanoeng; 2021; 7():99. PubMed ID: 34900333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli.
    Lin W; Wang B; Peng G; Shan Y; Hu H; Yang Z
    Adv Sci (Weinh); 2021 Feb; 8(3):2002817. PubMed ID: 33552864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration.
    Korotcenkov G
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36986004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser Direct Writing of a High-Performance All-Graphene Humidity Sensor Working in a Novel Sensing Mode for Portable Electronics.
    Cai J; Lv C; Aoyagi E; Ogawa S; Watanabe A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23987-23996. PubMed ID: 29931979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater.
    Wu J; Wu Z; Ding H; Wei Y; Yang X; Li Z; Yang BR; Liu C; Qiu L; Wang X
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43383-43392. PubMed ID: 31709789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing.
    Wang L; Liu Y; Liu Q; Zhu Y; Wang H; Xie Z; Yu X; Zi Y
    Microsyst Nanoeng; 2020; 6():59. PubMed ID: 34567670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chamber evaluation of a portable GC with tunable retention and microsensor-array detection for indoor air quality monitoring.
    Lu CJ; Jin C; Zellers ET
    J Environ Monit; 2006 Feb; 8(2):270-8. PubMed ID: 16470259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring.
    Han Z; Cheng Z; Chen Y; Li B; Liang Z; Li H; Ma Y; Feng X
    Nanoscale; 2019 Mar; 11(13):5942-5950. PubMed ID: 30662990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible mechanical metamaterials enabling soft tactile sensors with multiple sensitivities at multiple force sensing ranges.
    Mohammadi A; Tan Y; Choong P; Oetomo D
    Sci Rep; 2021 Dec; 11(1):24125. PubMed ID: 34916550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe
    Pataniya PM; Bhakhar SA; Tannarana M; Zankat C; Patel V; Solanki GK; Patel KD; Jha PK; Late DJ; Sumesh CK
    J Colloid Interface Sci; 2021 Feb; 584():495-504. PubMed ID: 33129159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring Indoor Air Quality for Enhanced Occupational Health.
    Pitarma R; Marques G; Ferreira BR
    J Med Syst; 2017 Feb; 41(2):23. PubMed ID: 28000117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability.
    Zhu P; Kuang Y; Wei Y; Li F; Ou H; Jiang F; Chen G
    Chem Eng J; 2021 Jan; 404():127105. PubMed ID: 32994751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics.
    Zhao X; Long Y; Yang T; Li J; Zhu H
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30171-30176. PubMed ID: 28825460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A personalised prosthetic liner with embedded sensor technology: a case study.
    Paternò L; Dhokia V; Menciassi A; Bilzon J; Seminati E
    Biomed Eng Online; 2020 Sep; 19(1):71. PubMed ID: 32928238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wireless remote weather monitoring system based on MEMS technologies.
    Ma RH; Wang YH; Lee CY
    Sensors (Basel); 2011; 11(3):2715-27. PubMed ID: 22163762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.