BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35518329)

  • 1. Green biorefinery - the ultra-high hydrolysis rate and behavior of
    Xu Y; Wang P; Xue S; Kong F; Ren H; Zhai H
    RSC Adv; 2020 May; 10(32):18908-18917. PubMed ID: 35518329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization and structural changes of lignin in naked oat stems during subcritical water autohydrolysis.
    Jiang L; Zhu Y; Wei J; Ren H; Zhai H
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130911. PubMed ID: 38492693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid.
    Wang Y; Yuan B; Ji Y; Li H
    Carbohydr Polym; 2013 Sep; 97(2):518-22. PubMed ID: 23911479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biorefinery process for production of paper and oligomers from Leucaena leucocephala K360 with or without prior autohydrolysis.
    Feria MJ; García JC; Díaz MJ; Fernández M; López F
    Bioresour Technol; 2012 Dec; 126():64-70. PubMed ID: 23073090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolysis of sweet blue lupin hull using subcritical water technology.
    Ciftci D; Saldaña MD
    Bioresour Technol; 2015 Oct; 194():75-82. PubMed ID: 26185928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugars and char formation on subcritical water hydrolysis of sugarcane straw.
    Lachos-Perez D; Tompsett GA; Guerra P; Timko MT; Rostagno MA; Martínez J; Forster-Carneiro T
    Bioresour Technol; 2017 Nov; 243():1069-1077. PubMed ID: 28764113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Assisted Optimization of Xylose, Arabinose, Glucose, Mannose, Galactose and Real Hemicellulose Streams Dehydration To (Hydroxymethyl)Furfural and Levulinic Acid.
    Jakob A; Likozar B; Grilc M
    ChemSusChem; 2024 Jul; ():e202400962. PubMed ID: 38959341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis-steam explosion.
    Dekker RF; Wallis AF
    Biotechnol Bioeng; 1983 Dec; 25(12):3027-48. PubMed ID: 18548636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics.
    Garrote G; Domínguez H; Parajó JC
    Bioresour Technol; 2001 Sep; 79(2):155-64. PubMed ID: 11480924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis.
    Lee JM; Shi J; Venditti RA; Jameel H
    Bioresour Technol; 2009 Dec; 100(24):6434-41. PubMed ID: 19665372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the evolution of the proton concentration during autohydrolysis and dilute-acid hydrolysis of hemicellulose.
    Kapu NS; Yuan Z; Chang XF; Beatson R; Martinez DM; Trajano HL
    Biotechnol Biofuels; 2016; 9():224. PubMed ID: 27790287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of Biomass to Organic Acids by Liquefaction Reactions Under Subcritical Conditions.
    Yüksel Özşen A
    Front Chem; 2020; 8():24. PubMed ID: 32117866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.
    Silva-Fernandes T; Duarte LC; Carvalheiro F; Marques S; Loureiro-Dias MC; Fonseca C; Gírio F
    Bioresour Technol; 2015 May; 183():203-12. PubMed ID: 25742752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.
    Sahu R; Dhepe PL
    ChemSusChem; 2012 Apr; 5(4):751-61. PubMed ID: 22411884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.
    Goldmann WM; Ahola J; Mikola M; Tanskanen J
    Bioresour Technol; 2017 May; 232():176-182. PubMed ID: 28231535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa.
    Wang W; Yuan T; Wang K; Cui B; Dai Y
    Bioresour Technol; 2012 Mar; 107():282-6. PubMed ID: 22244900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.
    Tian D; Chandra RP; Lee JS; Lu C; Saddler JN
    Biotechnol Biofuels; 2017; 10():157. PubMed ID: 28649276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.