BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35518678)

  • 1. Thermal debinding behavior of a low-toxic DMAA polymer for gelcast ceramic parts based on TG-FTIR and kinetic modeling.
    Li J; Zhang C; Yin R; Zhang W
    RSC Adv; 2019 Mar; 9(15):8415-8425. PubMed ID: 35518678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Debinding Kinetics of Gelcast Ceramic Parts via a Modified Independent Parallel Reaction Model in Comparison with the Multiple Normally Distributed Activation Energy Model.
    Li J; Huang J
    ACS Omega; 2022 Jun; 7(23):20219-20228. PubMed ID: 35722015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistage kinetic analysis of DMAA/MBAM polymer removal from gelcast ceramic parts using a multi-stage parallel reaction model and model-free method.
    Li J; Huang J; Yin R
    RSC Adv; 2019 Aug; 9(47):27305-27317. PubMed ID: 35529202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gases analysis.
    Zhao R; Wang X; Liu L; Li P; Tian L
    Bioresour Technol; 2019 Oct; 289():121674. PubMed ID: 31247527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of low-value waste switchgrass: Physicochemical characterization, kinetic investigation, and online characterization of hot pyrolysis vapours.
    Kumar Mishra R
    Bioresour Technol; 2022 Mar; 347():126720. PubMed ID: 35051570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis.
    Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J
    Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a Transient Thermal Expansion Rock Cracking Agent by Deposition Method and Its Nonisothermal Kinetics Study with Isoconversional Procedure and DAEM.
    Meng K; Qin X; Ling S; Chen C; Li B; Li B; Huang Y; Liao S; Hou L
    ACS Omega; 2023 Apr; 8(14):13109-13117. PubMed ID: 37065011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Characteristics and Kinetics of Waste
    Yang Z; Fu L; Fan F
    ACS Omega; 2019 Jun; 4(6):10370-10375. PubMed ID: 31460131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC-MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst.
    Eimontas J; Striūgas N; Abdelnaby MA; Yousef S
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33652610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study on the slow pyrolysis of nonmetal fraction of waste printed circuit boards (NMF-WPCBs).
    Yao Z; Xiong J; Yu S; Su W; Wu W; Tang J; Wu D
    Waste Manag Res; 2020 Aug; 38(8):903-910. PubMed ID: 31918637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison.
    Mian I; Li X; Jian Y; Dacres OD; Zhong M; Liu J; Ma F; Rahman N
    Bioresour Technol; 2019 Dec; 294():122099. PubMed ID: 31520856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of sectionalized single-step reaction approach (SSRA) and distributed activation energy model (DAEM) on the pyrolysis kinetics model of upstream oily sludge: Construction procedure and data reproducibility comparison.
    Qi Y; Ge B; Cao Q; Xi F; Shi X; Si Y; Wang X; Gao B; Yue Q; Xu X
    Sci Total Environ; 2021 Jun; 774():145751. PubMed ID: 33611005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model.
    Arenas CN; Navarro MV; Martínez JD
    Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis mechanism and pyrolysis kinetics of yellow wine lees.
    Ling-Niao K; Song-Tao G; Yang Y; Feng F
    RSC Adv; 2024 May; 14(24):16951-16959. PubMed ID: 38812961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of heating rate on thermal degradation behavior and kinetics of representative thermoplastic wastes.
    Zhang W; Jia J; Ding Y; Jiang G; Sun L; Lu K
    J Environ Manage; 2022 Jul; 314():115071. PubMed ID: 35430512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.