These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Ceylan S; Topcu Y; Ceylan Z Bioresour Technol; 2014 Nov; 171():193-8. PubMed ID: 25194914 [TBL] [Abstract][Full Text] [Related]
44. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. Radojević M; Janković B; Jovanović V; Stojiljković D; Manić N PLoS One; 2018; 13(10):e0206657. PubMed ID: 30379972 [TBL] [Abstract][Full Text] [Related]
45. Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere. Xu X; Pan R; Li P; Chen R Appl Biochem Biotechnol; 2020 Aug; 191(4):1605-1623. PubMed ID: 32193804 [TBL] [Abstract][Full Text] [Related]
46. Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS. Ma M; Bai Y; Song X; Wang J; Su W; Yao M; Yu G Sci Total Environ; 2020 Aug; 728():138828. PubMed ID: 32361111 [TBL] [Abstract][Full Text] [Related]
47. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Lin Y; Chen Z; Dai M; Fang S; Liao Y; Yu Z; Ma X Bioresour Technol; 2018 Jul; 259():173-180. PubMed ID: 29550731 [TBL] [Abstract][Full Text] [Related]
48. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis. Hu Z; Chen Z; Li G; Chen X; Hu M; Laghari M; Wang X; Guo D Bioresour Technol; 2015 Oct; 194():364-72. PubMed ID: 26210527 [TBL] [Abstract][Full Text] [Related]
49. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Açıkalın K Bioresour Technol; 2021 Oct; 337():125438. PubMed ID: 34166929 [TBL] [Abstract][Full Text] [Related]
50. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Yan JH; Zhu HM; Jiang XG; Chi Y; Cen KF J Hazard Mater; 2009 Mar; 162(2-3):646-51. PubMed ID: 18579296 [TBL] [Abstract][Full Text] [Related]
51. Studies on thermokinetic of Chlorella pyrenoidosa devolatilization via different models. Chen Z; Lei J; Li Y; Su X; Hu Z; Guo D Bioresour Technol; 2017 Nov; 244(Pt 1):320-327. PubMed ID: 28780266 [TBL] [Abstract][Full Text] [Related]
52. Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge. Jia H; Liu B; Zhang X; Chen J; Ren W Environ Res; 2020 Apr; 183():109250. PubMed ID: 32088608 [TBL] [Abstract][Full Text] [Related]
53. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres. Li L; Zhao N; Fu X; Shao M; Qin S Bioresour Technol; 2013 Jul; 140():152-7. PubMed ID: 23693145 [TBL] [Abstract][Full Text] [Related]
54. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Sfakiotakis S; Vamvuka D Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115 [TBL] [Abstract][Full Text] [Related]
55. Pyrolytic characteristics of fine materials from municipal solid waste using TG-FTIR, Py-GC/MS, and deep learning approach: Kinetics, thermodynamics, and gaseous products distribution. Lin K; Tian L; Zhao Y; Zhao C; Zhang M; Zhou T Chemosphere; 2022 Apr; 293():133533. PubMed ID: 34998842 [TBL] [Abstract][Full Text] [Related]
56. Thermal Decomposition Behavior of Hydroxytyrosol (HT) in Nitrogen Atmosphere Based on TG-FTIR Methods. Tu JL; Yuan JJ Molecules; 2018 Feb; 23(2):. PubMed ID: 29438312 [TBL] [Abstract][Full Text] [Related]
57. Pyrolysis and gasification of typical components in wastes with macro-TGA. Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422 [TBL] [Abstract][Full Text] [Related]
58. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566 [TBL] [Abstract][Full Text] [Related]
59. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Dubdub I; Al-Yaari M Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32290595 [TBL] [Abstract][Full Text] [Related]
60. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis. Xu X; Zhao B; Sun M; Chen X; Zhang M; Li H; Xu S Waste Manag; 2017 Apr; 62():91-100. PubMed ID: 28236506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]