BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35518732)

  • 1. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization.
    Saito H; Sekine Y
    RSC Adv; 2020 Jun; 10(36):21427-21453. PubMed ID: 35518732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances on Gallium-Modified ZSM-5 for Conversion of Light Hydrocarbons.
    Feng Z; Liu X; Wang Y; Meng C
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33924390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity, Selectivity, and Stability of Zeolite-Based Catalysts for Methane Dehydroaromatization.
    Kosinov N; Hensen EJM
    Adv Mater; 2020 Nov; 32(44):e2002565. PubMed ID: 32656906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation.
    Yang Z; Li H; Zhou H; Wang L; Wang L; Zhu Q; Xiao J; Meng X; Chen J; Xiao FS
    J Am Chem Soc; 2020 Sep; 142(38):16429-16436. PubMed ID: 32862644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends.
    Najari S; Saeidi S; Concepcion P; Dionysiou DD; Bhargava SK; Lee AF; Wilson K
    Chem Soc Rev; 2021 Apr; 50(7):4564-4605. PubMed ID: 33595011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Intensification of the Ethylene Process Utilizing a Catalytic Membrane Reactor.
    Bin Naqyah AS; Al-Rabiah AA
    ACS Omega; 2022 Aug; 7(32):28445-28458. PubMed ID: 35990494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethane Ammoxidation over Sn/H-Zeolite Catalysts: Toward the Factors Contributing to the Yield of Acetonitrile.
    Liu Y; Li T; Qiao S; Heng Z; Zhao T; Wu H; Xiong T; Li J; Yao X; Long L; Xiang Y; Liu Q; Lu L; Liang T; Chen J; Jin F
    ACS Appl Mater Interfaces; 2023 May; 15(21):25604-25614. PubMed ID: 37192272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness.
    Zhang Y; Wang B; Fan M; Ling L; Zhang R
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10679-10695. PubMed ID: 36795766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic selective ethane dehydrogenation at low-temperature with low coke formation.
    Watanabe K; Higo T; Tsuneki H; Maeda S; Hashimoto K; Sekine Y
    RSC Adv; 2022 Aug; 12(38):24465-24470. PubMed ID: 36128363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.
    Porosoff MD; Myint MN; Kattel S; Xie Z; Gomez E; Liu P; Chen JG
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15501-5. PubMed ID: 26554872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer.
    Ye L; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21746-21750. PubMed ID: 34346541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active sites for tandem reactions of CO
    Yan B; Yao S; Kattel S; Wu Q; Xie Z; Gomez E; Liu P; Su D; Chen JG
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8278-8283. PubMed ID: 30061384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane.
    Dai Y; Gao X; Wang Q; Wan X; Zhou C; Yang Y
    Chem Soc Rev; 2021 May; 50(9):5590-5630. PubMed ID: 33690780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic-Derived Catalytic Structures for CO
    Xie Z; Chen JG
    Acc Chem Res; 2023 Sep; 56(18):2447-2458. PubMed ID: 37647142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Layer Deposition for Preparing Isolated Co Sites on SiO
    Huang R; Cheng Y; Ji Y; Gorte RJ
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic effects of sulfur in ethane dehydroaromatization.
    Goodarzi F; Hansen LP; Helveg S; Mielby J; Nguyen TTM; Joensen F; Kegnæs S
    Chem Commun (Camb); 2020 May; 56(40):5378-5381. PubMed ID: 32285881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing Active Sites and Reaction Pathways in Methane Non-Oxidative Coupling over Iron-Containing Zeolites.
    Zhang H; Bolshakov A; Meena R; Garcia GA; Dugulan AI; Parastaev A; Li G; Hensen EJM; Kosinov N
    Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202306196. PubMed ID: 37395384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Carbon Mediating Dehydroaromatization of Methane over Mo/ZSM-5.
    Kosinov N; Wijpkema ASG; Uslamin E; Rohling R; Coumans FJAG; Mezari B; Parastaev A; Poryvaev AS; Fedin MV; Pidko EA; Hensen EJM
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1016-1020. PubMed ID: 29181863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.