These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35518767)

  • 1. Developments and applications of nanomaterial-based carbon paste electrodes.
    Tajik S; Beitollahi H; Nejad FG; Safaei M; Zhang K; Van Le Q; Varma RS; Jang HW; Shokouhimehr M
    RSC Adv; 2020 Jun; 10(36):21561-21581. PubMed ID: 35518767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria.
    Pourakbari R; Shadjou N; Yousefi H; Isildak I; Yousefi M; Rashidi MR; Khalilzadeh B
    Mikrochim Acta; 2019 Nov; 186(12):820. PubMed ID: 31748898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in functionalization of plasmonic nanostructures for optical sensing.
    Amirjani A; Rahbarimehr E
    Mikrochim Acta; 2021 Jan; 188(2):57. PubMed ID: 33506310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review.
    Zhang J; Tan Y; Song WJ
    Mikrochim Acta; 2020 Mar; 187(4):234. PubMed ID: 32180011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review.
    Khoshnevisan K; Maleki H; Honarvarfard E; Baharifar H; Gholami M; Faridbod F; Larijani B; Faridi Majidi R; Khorramizadeh MR
    Mikrochim Acta; 2019 Jan; 186(1):49. PubMed ID: 30610391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.
    Dhara K; Mahapatra DR
    Mikrochim Acta; 2017 Dec; 185(1):49. PubMed ID: 29594566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions.
    Pawar D; Kale SN
    Mikrochim Acta; 2019 Mar; 186(4):253. PubMed ID: 30903379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review.
    Sha R; Badhulika S
    Mikrochim Acta; 2020 Feb; 187(3):181. PubMed ID: 32076837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements.
    Hassanpour S; Baradaran B; de la Guardia M; Baghbanzadeh A; Mosafer J; Hejazi M; Mokhtarzadeh A; Hasanzadeh M
    Mikrochim Acta; 2018 Dec; 185(12):568. PubMed ID: 30506320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review.
    Yang H; Xu W; Liang X; Yang Y; Zhou Y
    Mikrochim Acta; 2020 Mar; 187(4):206. PubMed ID: 32152753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancements in electrochemical sensing of hydrogen peroxide, glucose and dopamine by using 2D nanoarchitectures of layered double hydroxides or metal dichalcogenides. A review.
    Aziz A; Asif M; Ashraf G; Azeem M; Majeed I; Ajmal M; Wang J; Liu H
    Mikrochim Acta; 2019 Sep; 186(10):671. PubMed ID: 31489483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional nanomaterial based sensors for heavy metal ions.
    Gan X; Zhao H; Schirhagl R; Quan X
    Mikrochim Acta; 2018 Sep; 185(10):478. PubMed ID: 30255387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review.
    Dervisevic M; Dervisevic E; Şenel M
    Mikrochim Acta; 2019 Nov; 186(12):749. PubMed ID: 31696297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing.
    Lu L
    Mikrochim Acta; 2019 Sep; 186(9):664. PubMed ID: 31478090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: a review.
    Hashemi B; Rezania S
    Mikrochim Acta; 2019 Jul; 186(8):578. PubMed ID: 31350596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review.
    Zuo Y; Xu J; Zhu X; Duan X; Lu L; Yu Y
    Mikrochim Acta; 2019 Feb; 186(3):171. PubMed ID: 30756239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review.
    Sinha A; Dhanjai ; Jain R; Zhao H; Karolia P; Jadon N
    Mikrochim Acta; 2018 Jan; 185(2):89. PubMed ID: 29594390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal amplification in immunoassays by using noble metal nanoparticles: a review.
    Yang H; Xu W; Zhou Y
    Mikrochim Acta; 2019 Nov; 186(12):859. PubMed ID: 31786658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold and silver nanoparticles in resonance Rayleigh scattering techniques for chemical sensing and biosensing: a review.
    El-Kurdi R; Patra D
    Mikrochim Acta; 2019 Sep; 186(10):667. PubMed ID: 31485856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Electrochemical Sensing of Heavy Metals Based on Amino Acids and Its Composites.
    Tang LW; Alias Y; Zakaria R; Woi PM
    Crit Rev Anal Chem; 2023; 53(4):869-886. PubMed ID: 34672838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.