BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35519055)

  • 1. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones.
    Lundy TA; Mori S; Garneau-Tsodikova S
    RSC Adv; 2020 Sep; 10(56):34299-34307. PubMed ID: 35519055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation.
    Lundy TA; Mori S; Garneau-Tsodikova S
    Org Biomol Chem; 2019 Jan; 17(5):1169-1175. PubMed ID: 30644493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding Substrate Promiscuity by Engineering a Novel Adenylating-Methylating NRPS Bifunctional Enzyme.
    Shrestha SK; Garneau-Tsodikova S
    Chembiochem; 2016 Jul; 17(14):1328-32. PubMed ID: 27128382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids.
    Lundy TA; Mori S; Garneau-Tsodikova S
    ACS Synth Biol; 2018 Feb; 7(2):399-404. PubMed ID: 29393631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions.
    Lundy TA; Mori S; Thamban Chandrika N; Garneau-Tsodikova S
    ACS Chem Biol; 2020 Jan; 15(1):282-289. PubMed ID: 31887013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unimodular Methylation by Adenylation-Thiolation Domains Containing an Embedded Methyltransferase.
    Mori S; Garneau-Tsodikova S; Tsodikov OV
    J Mol Biol; 2020 Oct; 432(21):5802-5808. PubMed ID: 32920052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families.
    Lundy TA; Mori S; Garneau-Tsodikova S
    RSC Chem Biol; 2020 Oct; 1(4):233-250. PubMed ID: 34458763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.
    Mitchell CA; Shi C; Aldrich CC; Gulick AM
    Biochemistry; 2012 Apr; 51(15):3252-63. PubMed ID: 22452656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-Engineering Fungal Nonribosomal Peptide Synthetases by Module Dissection and Duplicated Thiolation Domains.
    Yin M; Xie L; Chen K; Zhang L; Yue Q; Wang C; Zeng J; Hao X; Gu X; Molnár I; Xu Y
    Angew Chem Int Ed Engl; 2024 Jun; ():e202406360. PubMed ID: 38822735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.
    Ishikawa F; Miyamoto K; Konno S; Kasai S; Kakeya H
    ACS Chem Biol; 2015 Dec; 10(12):2816-26. PubMed ID: 26474351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate selection of adenylation domains for nonribosomal peptide synthetase (NRPS) in bacillamide C biosynthesis by marine Bacillus atrophaeus C89.
    Zhang F; Wang Y; Jiang Q; Chen Q; Karthik L; Zhao YL; Li Z
    J Ind Microbiol Biotechnol; 2018 May; 45(5):335-344. PubMed ID: 29572612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for backbone N-methylation by an interrupted adenylation domain.
    Mori S; Pang AH; Lundy TA; Garzan A; Tsodikov OV; Garneau-Tsodikova S
    Nat Chem Biol; 2018 May; 14(5):428-430. PubMed ID: 29556104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoproteomic Profiling of Adenylation Domain Functions in Gramicidin S-Producing Non-ribosomal Peptide Synthetases.
    Ishikawa F; Tanabe G
    Methods Mol Biol; 2023; 2670():69-100. PubMed ID: 37184700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis.
    Labby KJ; Watsula SG; Garneau-Tsodikova S
    Nat Prod Rep; 2015 May; 32(5):641-53. PubMed ID: 25622971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases.
    Miller BR; Sundlov JA; Drake EJ; Makin TA; Gulick AM
    Proteins; 2014 Oct; 82(10):2691-702. PubMed ID: 24975514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ways of assembling complex natural products on modular nonribosomal peptide synthetases.
    Mootz HD; Schwarzer D; Marahiel MA
    Chembiochem; 2002 Jun; 3(6):490-504. PubMed ID: 12325005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622.
    Esquilín-Lebrón KJ; Boynton TO; Shimkets LJ; Thomas MG
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30126939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Engineering of the Adenylation Domain of a NRPS-Like Protein: A Potential Biocatalyst for Aldehyde Generation.
    Wang M; Zhao H
    ACS Catal; 2014 Apr; 4(4):1219-1225. PubMed ID: 24804152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules.
    Duban M; Cociancich S; Leclère V
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptide formation on engineered hybrid peptide synthetases.
    Doekel S; Marahiel MA
    Chem Biol; 2000 Jun; 7(6):373-84. PubMed ID: 10873839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.