These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35519186)

  • 21. Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions.
    Cho BK; Cho HJ; Park SH; Yun H; Kim BG
    Biotechnol Bioeng; 2003 Mar; 81(7):783-9. PubMed ID: 12557311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enantioselective synthesis of enantiopure β-amino alcohols via kinetic resolution and asymmetric reductive amination by a robust transaminase from Mycobacterium vanbaalenii.
    Zhang JD; Zhao JW; Gao LL; Chang HH; Wei WL; Xu JH
    J Biotechnol; 2019 Jan; 290():24-32. PubMed ID: 30553805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Generation of Smart Amine Donors for Transaminase-Mediated Biotransformations.
    Gomm A; Lewis W; Green AP; O'Reilly E
    Chemistry; 2016 Aug; 22(36):12692-5. PubMed ID: 27411957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Features and technical applications of ω-transaminases.
    Malik MS; Park ES; Shin JS
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1163-71. PubMed ID: 22555915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential Two-Step Stereoselective Amination of Allylic Alcohols through the Combination of Laccases and Amine Transaminases.
    Albarrán-Velo J; Lavandera I; Gotor-Fernández V
    Chembiochem; 2020 Jan; 21(1-2):200-211. PubMed ID: 31513330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemoenzymatic asymmetric synthesis of 1,4-benzoxazine derivatives: application in the synthesis of a levofloxacin precursor.
    López-Iglesias M; Busto E; Gotor V; Gotor-Fernández V
    J Org Chem; 2015 Apr; 80(8):3815-24. PubMed ID: 25786159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones.
    Teixeira IS; Farias AB; Horta BAC; Milagre HMS; de Souza ROMA; Bornscheuer UT; Milagre CDF
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture.
    Savile CK; Janey JM; Mundorff EC; Moore JC; Tam S; Jarvis WR; Colbeck JC; Krebber A; Fleitz FJ; Brands J; Devine PN; Huisman GW; Hughes GJ
    Science; 2010 Jul; 329(5989):305-9. PubMed ID: 20558668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic resolution of chiral amines with omega-transaminase using an enzyme-membrane reactor.
    Shin JS; Kim BG; Liese A; Wandrey C
    Biotechnol Bioeng; 2001 May; 73(3):179-87. PubMed ID: 11257600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creation of a robust and R-selective ω-amine transaminase for the asymmetric synthesis of sitagliptin intermediate on a kilogram scale.
    Cheng F; Chen XL; Li MY; Zhang XJ; Jia DX; Wang YJ; Liu ZQ; Zheng YG
    Enzyme Microb Technol; 2020 Nov; 141():109655. PubMed ID: 33051014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.
    Zuo W; Morris RH
    Nat Protoc; 2015 Feb; 10(2):241-57. PubMed ID: 25569331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and biochemical characterization of the dual substrate recognition of the (R)-selective amine transaminase from Aspergillus fumigatus.
    Skalden L; Thomsen M; Höhne M; Bornscheuer UT; Hinrichs W
    FEBS J; 2015 Jan; 282(2):407-15. PubMed ID: 25400251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green synthesis of (S)-1-(furan-2-yl)propan-1-ol from asymmetric bioreduction of 1-(furan-2-yl)propan-1-one using whole-cell of Lactobacillus paracasei BD101.
    Bülbül AS; Şahin E
    Chirality; 2024 Jan; 36(1):e23620. PubMed ID: 37727057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric synthesis of chiral amines with omega-transaminase.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1999 Oct; 65(2):206-11. PubMed ID: 10458742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening.
    Green AP; Turner NJ; O'Reilly E
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10714-7. PubMed ID: 25138082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetric Preparation of
    Kroutil W; Fischereder EM; Fuchs CS; Lechner H; Mutti FG; Pressnitz D; Rajagopalan A; Sattler JH; Simon RC; Siirola E
    Org Process Res Dev; 2013 May; 17(5):751-759. PubMed ID: 23794796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design.
    Zhu FY; Huang MY; Zheng K; Zhang XJ; Cai X; Huang LG; Liu ZQ; Zheng YG
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127348. PubMed ID: 37820904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The advance of ω-transaminase in chiral amine biosynthesis in China from the perspective of patents].
    Li Z; Liu Y; Luo Q; Lü X
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3169-3187. PubMed ID: 37622354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directed evolution of an amine transaminase for the synthesis of an Apremilast intermediate via kinetic resolution.
    Xiang C; Wu S; Bornscheuer UT
    Bioorg Med Chem; 2021 Aug; 43():116271. PubMed ID: 34171757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.