These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 35519363)
1. Experimental investigation on strength development of lime stabilized loess. Jia L; Guo J; Zhou Z; Fu Y; Yao K RSC Adv; 2019 Jun; 9(34):19680-19689. PubMed ID: 35519363 [TBL] [Abstract][Full Text] [Related]
2. Experimental investigations on physico-mechanical properties of kaolinite clay soil stabilized at optimum silica fume content using clamshell ash and lime. Zaini MSI; Hasan M; Almuaythir S; Hyodo M Sci Rep; 2024 May; 14(1):10995. PubMed ID: 38745097 [TBL] [Abstract][Full Text] [Related]
3. Effects of Freeze-Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess. Wang W; Cao G; Li Y; Zhou Y; Lu T; Zheng B; Geng W Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406338 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Strength Development and Soil-Water Characteristics of Rice Husk Ash-Lime Stabilized Soft Soil. Jiang X; Huang Z; Ma F; Luo X Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31771232 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of Loess Using Nano-SiO₂. Kong R; Zhang F; Wang G; Peng J Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29904025 [TBL] [Abstract][Full Text] [Related]
6. Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning. Onyelowe KC; Moghal AAB; Ebid A; Rehman AU; Hanandeh S; Priyan V Sci Rep; 2024 Jul; 14(1):15308. PubMed ID: 38961241 [TBL] [Abstract][Full Text] [Related]
7. Investigation on the solidification effect and mechanism of loess utilizing magnesium oxysulfate cement as a curing agent. Yan X; Xu Q; Deng M; Sun Y; He X; Dong S; Ma L; Hai C; Zhou Y Sci Total Environ; 2024 Nov; 951():175214. PubMed ID: 39106903 [TBL] [Abstract][Full Text] [Related]
8. Laboratory Experiments and Numerical Simulation Study of Composite-Material-Modified Loess Improving High-Speed Railway Subgrade. Luo L; Wang X; Xue C; Wang D; Lian B Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956729 [TBL] [Abstract][Full Text] [Related]
9. Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Luo Z; Luo B; Zhao Y; Li X; Su Y; Huang H; Wang Q Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054713 [TBL] [Abstract][Full Text] [Related]
10. Wetting/Drying Behavior of Lime and Alkaline Activation Stabilized Marine Clay Reinforced with Modified Coir Fiber. Kamaruddin FA; Anggraini V; Kim Huat B; Nahazanan H Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560432 [TBL] [Abstract][Full Text] [Related]
11. Strength and microstructural properties of silt soil cured by lime-activated fly ash-GGBS under different curing temperatures. Gong S; Feng S; Wang S; Yu L; Chen Y; Xu Q Sci Rep; 2024 Mar; 14(1):6966. PubMed ID: 38521864 [TBL] [Abstract][Full Text] [Related]
12. Investigation on Mechanical and Microstructure Properties of Silt Improved by Titanium Gypsum-Based Stabilizer. Lin Q; Zhen X; Rong Y; Li Y; Zhang H; Zhang Q; Yao Z; Yao K Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614610 [TBL] [Abstract][Full Text] [Related]
13. The Role of Superabsorbent Polymer on Strength and Microstructure Development in Cemented Dredged Clay with High Water Content. Bian X; Zeng L; Deng Y; Li X Polymers (Basel); 2018 Sep; 10(10):. PubMed ID: 30960994 [TBL] [Abstract][Full Text] [Related]
14. Coupled effects of fly ash and calcium formate on strength development of cemented tailings backfill. Miao X; Wu J; Wang Y; Ma D; Pu H Environ Sci Pollut Res Int; 2022 Aug; 29(40):59949-59964. PubMed ID: 35411521 [TBL] [Abstract][Full Text] [Related]
15. Modeling the influence of lime on the unconfined compressive strength of reconstituted graded soil using advanced machine learning approaches for subgrade and liner applications. Guo X; Garcia C; Andrade Valle AI; Onyelowe K; Zarate Villacres AN; Ebid AM; Hanandeh S PLoS One; 2024; 19(4):e0301075. PubMed ID: 38564619 [TBL] [Abstract][Full Text] [Related]
16. Rice husk ash-carbide lime as an alternative binder for waste foundry sand stabilization. Pelisser G; Ferrazzo ST; Mota JD; Dos Santos CP; Pelisser C; Rosa FD; Korf EP Environ Sci Pollut Res Int; 2023 Mar; 30(14):42176-42191. PubMed ID: 36645596 [TBL] [Abstract][Full Text] [Related]
17. Determining soil water characteristic curve of lime treated loess using multiscale structure fractal characteristic. Li X; Hu C; Li F; Gao H Sci Rep; 2020 Dec; 10(1):21569. PubMed ID: 33299015 [TBL] [Abstract][Full Text] [Related]
18. Unconfined Compressive Strength of Cement-Stabilized Qiantang River Silty Clay. Zhang L; Li Y; Wei X; Liang X; Zhang J; Li X Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473554 [TBL] [Abstract][Full Text] [Related]
19. Study on Mechanical Properties of Permeable Polymer Treated Loess. Zhao W; Guo C; Wang C; Wang Y; Wang L Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233991 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the Effect of Binary Fly Ash-Lime Mixture on the Bearing Capacity of Natural Soils: A Comparison with Two Conventional Stabilizers Lime and Portland Cement. Arias-Jaramillo YP; Gómez-Cano D; Carvajal GI; Hidalgo CA; Muñoz F Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]