These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35519409)
1. Mn promotes the rate of nucleation and growth of precipitates by increasing Frenkel pairs in Fe-Cu based alloys. Li T; Xie Y; Wang X; Shen Q; Li J; Guo H; Xu J; Liu W RSC Adv; 2019 Jun; 9(34):19620-19629. PubMed ID: 35519409 [TBL] [Abstract][Full Text] [Related]
2. Effect of Cu on Nanoscale Precipitation Evolution and Mechanical Properties of a Fe-NiAl Alloy. Shen Q; Chen H; Liu W Microsc Microanal; 2017 Apr; 23(2):350-359. PubMed ID: 28320490 [TBL] [Abstract][Full Text] [Related]
3. Controlled nano Cu precipitation through age treatment: A method to enhance the biodegradation, mechanical, antimicrobial properties and biocompatibility of Fe-20Mn-3Cu alloys. Mandal S; Kishore AV; Mandal S; Bhar B; Mandal BB; Nandi SK; Roy M Acta Biomater; 2023 Sep; 168():650-669. PubMed ID: 37451660 [TBL] [Abstract][Full Text] [Related]
4. Revisiting Temporal Evolution of Cu-Rich Precipitates in Fe-Cu Alloy: Correlative Small Angle Neutron Scattering and Atom-Probe Tomography Studies. Ahlawat S; Sarkar SK; Sen D; Biswas A Microsc Microanal; 2019 Aug; 25(4):840-848. PubMed ID: 31046856 [TBL] [Abstract][Full Text] [Related]
5. Dislocation loop and irradiation-induced synergistic-competitive mechanism in Cu-rich precipitates: a phase-field study. Yang W; Guo Q; Wang K; Lei P; Hou H; Zhao Y Sci Rep; 2024 Jun; 14(1):12767. PubMed ID: 38834658 [TBL] [Abstract][Full Text] [Related]
6. Atom Probe Tomographic Characterization of Nanoscale Cu-Rich Precipitates in 17-4 Precipitate Hardened Stainless Steel Tempered at Different Temperatures. Wang Z; Fang X; Li H; Liu W Microsc Microanal; 2017 Apr; 23(2):340-349. PubMed ID: 28300016 [TBL] [Abstract][Full Text] [Related]
7. First-Principles Calculations to Investigate the Influence of Irradiation Defects on the Swelling Behavior of Fe-13Cr Alloys. Hu YY; Xie YP; Wu L; Qin JT; Pan RJ; Yao MY Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161209 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of interfacial segregation to Cu-enriched precipitates in two thermally aged reactor pressure vessel steel welds. Styman PD; Hyde JM; Wilford K; Parfitt D; Riddle N; Smith GD Ultramicroscopy; 2015 Dec; 159 Pt 2():292-8. PubMed ID: 26051655 [TBL] [Abstract][Full Text] [Related]
9. The influence of Cu addition on precipitation in Fe-Cr-Ni-Al-(Cu) model alloys. Höring S; Wanderka N; Banhart J Ultramicroscopy; 2009 Apr; 109(5):574-9. PubMed ID: 19153011 [TBL] [Abstract][Full Text] [Related]
10. Enhanced age-hardening response and creep resistance of an Al-0.5Mn-0.3Si (at.%) alloy by Sn inoculation. Farkoosh AR; Dunand DC; Seidman DN Acta Mater; 2022 Nov; 240():. PubMed ID: 36246780 [TBL] [Abstract][Full Text] [Related]
11. Co-precipitated and collocated carbides and Cu-rich precipitates in a Fe-Cu steel characterized by atom-probe tomography. Kolli RP; Seidman DN Microsc Microanal; 2014 Dec; 20(6):1727-39. PubMed ID: 25254942 [TBL] [Abstract][Full Text] [Related]
12. Molecular Dynamics Research on the Impact of Vacancies on Cu Precipitation in BCC-Fe. Zhang H; Chen Y; Wang X; Li H; Li Y Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501116 [TBL] [Abstract][Full Text] [Related]
13. Co-Precipitation, Strength and Electrical Resistivity of Cu-26 wt % Ag-0.1 wt % Fe Alloy. Li R; Wang E; Zuo X Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29207505 [TBL] [Abstract][Full Text] [Related]
14. Understanding the migration mechanism of hydrogen atom from the α-Fe matrix into nano-precipitates Ma Y; Zhou S; He Y; Su Y; Qiao L; Gao L Phys Chem Chem Phys; 2023 Nov; 25(43):29727-29737. PubMed ID: 37882790 [TBL] [Abstract][Full Text] [Related]
15. An atom probe perspective on phase separation and precipitation in duplex stainless steels. Guo W; Garfinkel DA; Tucker JD; Haley D; Young GA; Poplawsky JD Nanotechnology; 2016 Jun; 27(25):254004. PubMed ID: 27181108 [TBL] [Abstract][Full Text] [Related]
16. Atomic Structure of Hardening Precipitates in Al-Mg-Si Alloys: Influence of Minor Additions of Cu and Zn. Bartawi EH; Marioara CD; Shaban G; Hatzoglou C; Holmestad R; Ambat R ACS Nano; 2023 Dec; 17(23):24115-24129. PubMed ID: 38010110 [TBL] [Abstract][Full Text] [Related]
17. Combined atomic-scale modelling and experimental studies of nucleation in the solid state. Cerezo A; Hirosawa S; Rozdilsky I; Smith GD Philos Trans A Math Phys Eng Sci; 2003 Mar; 361(1804):463-76; discussion 476-7. PubMed ID: 12662449 [TBL] [Abstract][Full Text] [Related]
18. The influence of elastic strain on the early stages of decomposition in Cu-1.7at% Fe. Rademacher T; Al-Kassab T; Kirchheim R Ultramicroscopy; 2009 Apr; 109(5):524-9. PubMed ID: 19019540 [TBL] [Abstract][Full Text] [Related]
19. Effects of Fe-Ions Irradiation on the Microstructure and Mechanical Properties of FeCrAl-1.5wt.% ZrC Alloys. Wang R; Wang H; Zhu X; Liang X; Li Y; Gao Y; An X; Liu W Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947772 [TBL] [Abstract][Full Text] [Related]
20. Distortion energy-electronic energy compensation determines the nature of solute interactions with irradiation induced vacancies in ferritic steel. Ahlawat S; Srinivasu K; Biswas A; Choudhury N Phys Chem Chem Phys; 2021 Apr; 23(14):8689-8704. PubMed ID: 33876029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]