BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35519599)

  • 1. A bis-benzimidazole PMO ratiometric fluorescence sensor exhibiting AIEE and ESIPT for sensitive detection of Cu
    Hao X; Han S; Zhu J; Hu Y; Chang LY; Pao CW; Chen JL; Chen JM; Haw SC
    RSC Adv; 2019 Apr; 9(24):13567-13575. PubMed ID: 35519599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Chemosensor of 1,8-Dihydroxyanthraquinone PMOs Prepared in a Ternary Deep Eutectic Solvent for the Sensitive Detection of Cu
    Li Z; Han S
    ACS Omega; 2022 Jul; 7(26):22613-22625. PubMed ID: 35811913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Excited-State Intramolecular Proton Transfer and Structural Dynamics in Bis-Benzimidazole Derivative (BBM).
    Xie J; Wang Z; Zhu R; Jiang J; Weng TC; Ren Y; Han S; Huang Y; Liu W
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An "off-on-off" fluorescence chemosensor for the sensitive detection of Cu
    Zhou A; Han S
    Analyst; 2021 Apr; 146(8):2670-2678. PubMed ID: 33666205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective fluorescence detection of Cu
    Gao M; Xing C; Jiang X; Xu L; Li P; Hsiao CD
    Luminescence; 2021 Jun; 36(4):951-957. PubMed ID: 33576173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule.
    Behera SK; Murkherjee A; Sadhuragiri G; Elumalai P; Sathiyendiran M; Kumar M; Mandal BB; Krishnamoorthy G
    Faraday Discuss; 2017 Feb; 196():71-90. PubMed ID: 27942653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of Nanoantioxidant Based on Mesoporous Organosilica Trp-Met-PMO with Dipeptide Skeleton.
    Zhou W; Ma H; Dai Y; Du Y; Guo C; Wang J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Copper(II) Sensitivity by Combined use of AIEE Active and Inactive Schiff Bases.
    Bhardwaj K; Anand T; Jangir R; Sahoo SK
    J Fluoresc; 2024 May; 34(3):1065-1074. PubMed ID: 37452963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel AIEE active anti-B
    Xiong L; Zheng Y; Wang H; Yan J; Huang X; Meng H; Tan C
    Methods Appl Fluoresc; 2022 May; 10(3):. PubMed ID: 35483353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials.
    Kaczmarek AM; Van Der Voort P
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31991687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic Mesoporous Organosilica Nanomaterials with Unconventional Structures and Properties.
    Vafaeezadeh M; Thiel WR
    Chemistry; 2023 Jun; 29(33):e202204005. PubMed ID: 36883552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced fluorescence detection of metal ions using light-harvesting mesoporous organosilica.
    Waki M; Mizoshita N; Maegawa Y; Hasegawa T; Tani T; Shimada T; Inagaki S
    Chemistry; 2012 Feb; 18(7):1992-8. PubMed ID: 22241552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric fluorescent nanosensors for copper(II) based on bis(rhodamine)-derived PMOs with J-type aggregates.
    Qiu X; Han S; Hu Y; Sun B
    Chemistry; 2015 Mar; 21(10):4126-32. PubMed ID: 25640601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Selective Excited-State Intramolecular-Proton-Transfer (ESIPT) Sensor for Copper(II) Based on Chelation-Enhanced Quenching and "Off-On" Detection of Amino Acids.
    Devasia J; Joy F; Nizam A
    Chemistry; 2023 May; 29(25):e202203652. PubMed ID: 36750756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical sensors based on periodic mesoporous organosilica @NaYF
    Liu W; Kaczmarek AM; Van Der Voort P; Van Deun R
    Dalton Trans; 2022 Aug; 51(30):11467-11475. PubMed ID: 35833424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol-assisted synthesis of mesoporous organosilica microspheres with controlled organic contents.
    Yamauchi Y; Suzuki N; Gupta P; Sato K; Fukata N; Murakami M; Shimizu T; Inoue S; Kimura T
    Sci Technol Adv Mater; 2009 Apr; 10(2):025005. PubMed ID: 27877292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-Scaffolded Synthesis of Periodic Mesoporous Organosilica Nanomaterials for Delivery Systems in Cancer Cells.
    Attia MF; Akasov R; Alexis F; Whitehead DC
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6671-6679. PubMed ID: 33320612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Intracellular Degradable Periodic Mesoporous Organosilica Hybrid Nanoparticles for Doxorubicin Drug Delivery in Cancer Cells.
    Rao KM; Parambadath S; Kumar A; Ha CS; Han SS
    ACS Biomater Sci Eng; 2018 Jan; 4(1):175-183. PubMed ID: 33418687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Templated synthesis of electroactive periodic mesoporous organosilica bridged with oligoaniline.
    Guo Y; Mylonakis A; Zhang Z; Yang G; Lelkes PI; Che S; Lu Q; Wei Y
    Chemistry; 2008; 14(9):2909-17. PubMed ID: 18224650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.
    Luo L; Liang Y; Erichsen ES; Anwander R
    Chemistry; 2018 May; 24(28):7200-7209. PubMed ID: 29572993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.