These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35519601)

  • 1. Synergistic inhibition effect on the self-acceleration characteristics in the initial stage of methane/air explosion by CO
    Pei B; Wei S; Chen L; Pan R; Yu M; Jing G
    RSC Adv; 2019 Apr; 9(24):13940-13948. PubMed ID: 35519601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Synergistic Suppression Effect and Mechanism of N
    Pei B; Han Y; Chen L; Hu Z; Wu Z; Lv H; Ji W
    ACS Omega; 2024 Mar; 9(12):14539-14550. PubMed ID: 38559942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive.
    Cao X; Ren J; Zhou Y; Wang Q; Gao X; Bi M
    J Hazard Mater; 2015 Mar; 285():311-8. PubMed ID: 25528229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist.
    Cao X; Ren J; Bi M; Zhou Y; Li Y
    J Hazard Mater; 2017 Feb; 324(Pt B):489-497. PubMed ID: 27843023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental research on explosion suppression affected by ultrafine water mist containing different additives.
    Cao XY; Bi MS; Ren JJ; Chen B
    J Hazard Mater; 2019 Apr; 368():613-620. PubMed ID: 30721856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on the methane explosion suppression by ultra-fine water mist containing bacteria under degradation for five times.
    Yang K; Wang L; Ji H; Xing Z; Jiang J
    Environ Sci Pollut Res Int; 2024 May; 31(25):37835-37847. PubMed ID: 38789706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Methane Explosion Suppression in Diagonal Pipe Networks Using a Fine Water Mist Containing KCl and an Inert Gas.
    Fengxiao W; Jinzhang J; Xiuyuan T
    ACS Omega; 2022 Sep; 7(37):32959-32969. PubMed ID: 36157747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives.
    Gan B; Li B; Jiang H; Bi M; Gao W
    J Hazard Mater; 2018 Jun; 351():346-355. PubMed ID: 29558658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High methane natural gas/air explosion characteristics in confined vessel.
    Tang C; Zhang S; Si Z; Huang Z; Zhang K; Jin Z
    J Hazard Mater; 2014 Aug; 278():520-8. PubMed ID: 25010457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Methane Explosion Suppression Characteristics of N
    Wang J; Zhao Y; Zheng L; Pan R; Lu C; Liu G; Liu X
    ACS Omega; 2023 Jan; 8(1):1375-1388. PubMed ID: 36643466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Inhibition Effect of NaCl on the Explosion of Mg-Al Alloy Powder.
    Qin X; Wei X; Shi J; Yan Y; Zhang Y
    ACS Omega; 2024 Feb; 9(7):8048-8054. PubMed ID: 38405477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Suppression of Methane Explosions by N
    Chen X; Zhao T; Cheng F; Lu K; Shi X; Yu W
    ACS Omega; 2023 Mar; 8(12):10863-10874. PubMed ID: 37008097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative research on gas explosion inhibition by water mist.
    Song Y; Zhang Q
    J Hazard Mater; 2019 Feb; 363():16-25. PubMed ID: 30300774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber.
    Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R
    Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient reaction process and mechanism of cornstarch/air and CH
    Jing Q; Wang D; Liu Q; Shen Y; Wang Z; Chen X; Zhong Y
    J Hazard Mater; 2021 May; 409():124475. PubMed ID: 33187801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of initial gas concentration on methane-air mixtures explosion characteristics and implications for safety management.
    Jia Q; Si R; Wang L; Li Z; Xue S
    Sci Rep; 2023 Aug; 13(1):13519. PubMed ID: 37598244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder.
    Zheng L; Li G; Wang Y; Zhu X; Pan R; Wang Y
    J Hazard Mater; 2018 Aug; 355():25-33. PubMed ID: 29763798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Initial Turbulence on the Explosion Limit and Flame Propagation Behaviors of Premixed Syngas-Air Mixtures.
    Zhang H; Tan Y; Zhang S; Xu Y; Zhao Y; Guo J; Cao W
    ACS Omega; 2021 Nov; 6(46):30910-30918. PubMed ID: 34841134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of flexible obstacles with different thicknesses on explosion propagation of premixed methane-air in a confined duct.
    Wang Z; Zhang Z; Yu J; Zhai Z
    Heliyon; 2023 Aug; 9(8):e18803. PubMed ID: 37609431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.