These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35519617)

  • 1. 3D Bioprinting for Spinal Cord Injury Repair.
    Yuan TY; Zhang J; Yu T; Wu JP; Liu QY
    Front Bioeng Biotechnol; 2022; 10():847344. PubMed ID: 35519617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
    Bedir T; Ulag S; Ustundag CB; Gunduz O
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Application of Three-Dimensional Bioprinting Scaffold in the Repair of Spinal Cord Injury.
    Lu D; Yang Y; Zhang P; Ma Z; Li W; Song Y; Feng H; Yu W; Ren F; Li T; Zeng H; Wang J
    Tissue Eng Regen Med; 2022 Dec; 19(6):1113-1127. PubMed ID: 35767151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinted neural tissue constructs for spinal cord injury repair.
    Liu X; Hao M; Chen Z; Zhang T; Huang J; Dai J; Zhang Z
    Biomaterials; 2021 May; 272():120771. PubMed ID: 33798962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord.
    Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD
    Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury.
    Liu S; Yang H; Chen D; Xie Y; Tai C; Wang L; Wang P; Wang B
    Regen Biomater; 2022; 9():rbac038. PubMed ID: 35801010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms.
    Zarepour A; Hooshmand S; Gökmen A; Zarrabi A; Mostafavi E
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic 3D-printed scaffolds for spinal cord injury repair.
    Koffler J; Zhu W; Qu X; Platoshyn O; Dulin JN; Brock J; Graham L; Lu P; Sakamoto J; Marsala M; Chen S; Tuszynski MH
    Nat Med; 2019 Feb; 25(2):263-269. PubMed ID: 30643285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair.
    Hsieh FY; Lin HH; Hsu SH
    Biomaterials; 2015 Dec; 71():48-57. PubMed ID: 26318816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications.
    Ning L; Sun H; Lelong T; Guilloteau R; Zhu N; Schreyer DJ; Chen X
    Biofabrication; 2018 Jun; 10(3):035014. PubMed ID: 29911990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithography-Based 3D Bioprinting and Bioinks for Bone Repair and Regeneration.
    Liang R; Gu Y; Wu Y; Bunpetch V; Zhang S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):806-816. PubMed ID: 33715367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering.
    Mallakpour S; Tukhani M; Hussain CM
    Adv Colloid Interface Sci; 2021 Jun; 292():102415. PubMed ID: 33892215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Bioprinting Technologies for Tissue Engineering Applications.
    Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH
    Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Narrative review of gene modification: applications in three-dimensional (3D) bioprinting.
    Fu B; Shen J; Chen Y; Wu Y; Zhang H; Liu H; Huang W
    Ann Transl Med; 2021 Oct; 9(19):1502. PubMed ID: 34805364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury.
    Wang J; Kong X; Li Q; Li C; Yu H; Ning G; Xiang Z; Liu Y; Feng S
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34139682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering bioinks for 3D bioprinting.
    Decante G; Costa JB; Silva-Correia J; Collins MN; Reis RL; Oliveira JM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury.
    Jiang JP; Liu XY; Zhao F; Zhu X; Li XY; Niu XG; Yao ZT; Dai C; Xu HY; Ma K; Chen XY; Zhang S
    Neural Regen Res; 2020 May; 15(5):959-968. PubMed ID: 31719263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.