These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35519996)
1. Enhanced performance of PTB7-Th:PCBM based active layers in ternary organic solar cells. Lakhotiya G; Belsare N; Arbuj S; Kale B; Rana A RSC Adv; 2019 Mar; 9(13):7457-7463. PubMed ID: 35519996 [TBL] [Abstract][Full Text] [Related]
2. Combined effect of ZnO nanoripples and solvent additive on the nanomorphology and performance of PTB7-Th: PC Khan JA; Sharma R; Sarkar SK; Panwar AS; Gupta D Nanotechnology; 2019 Sep; 30(38):385204. PubMed ID: 31048572 [TBL] [Abstract][Full Text] [Related]
3. Composition-Morphology Correlation in PTB7-Th/PC Song L; Wang W; Barabino E; Yang D; Körstgens V; Zhang P; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2019 Jan; 11(3):3125-3135. PubMed ID: 30592400 [TBL] [Abstract][Full Text] [Related]
4. Interface engineering through electron transport layer modification for high efficiency organic solar cells. Borse K; Sharma R; Gupta D; Yella A RSC Adv; 2018 Feb; 8(11):5984-5991. PubMed ID: 35539580 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596 [TBL] [Abstract][Full Text] [Related]
6. 11% Organic Photovoltaic Devices Based on PTB7-Th: PC Aqoma H; Park S; Park HY; Hadmojo WT; Oh SH; Nho S; Kim DH; Seo J; Park S; Ryu DY; Cho S; Jang SY Adv Sci (Weinh); 2018 Jul; 5(7):1700858. PubMed ID: 30027029 [TBL] [Abstract][Full Text] [Related]
8. Low-Temperature Solution-Processed Thiophene-Sulfur-Doped Planar ZnO Nanorods as Electron-Transporting Layers for Enhanced Performance of Organic Solar Cells. Ambade SB; Ambade RB; Bagde SS; Eom SH; Mane RS; Shin WS; Lee SH ACS Appl Mater Interfaces; 2017 Feb; 9(4):3831-3841. PubMed ID: 28029030 [TBL] [Abstract][Full Text] [Related]
9. Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light. Jeong J; Seo J; Nam S; Han H; Kim H; Anthopoulos TD; Bradley DD; Kim Y Adv Sci (Weinh); 2016 Apr; 3(4):1500269. PubMed ID: 27774398 [TBL] [Abstract][Full Text] [Related]
10. Butanedithiol Solvent Additive Extracting Fullerenes from Donor Phase To Improve Performance and Photostability in Polymer Solar Cells. Xie Y; Hu X; Yin J; Zhang L; Meng X; Xu G; Ai Q; Zhou W; Chen Y ACS Appl Mater Interfaces; 2017 Mar; 9(11):9918-9925. PubMed ID: 28247767 [TBL] [Abstract][Full Text] [Related]
11. Insights into the Morphological Instability of Bulk Heterojunction PTB7-Th/PCBM Solar Cells upon High-Temperature Aging. Hsieh YJ; Huang YC; Liu WS; Su YA; Tsao CS; Rwei SP; Wang L ACS Appl Mater Interfaces; 2017 May; 9(17):14808-14816. PubMed ID: 28399362 [TBL] [Abstract][Full Text] [Related]
12. Toward Long-Term Stable and Efficient Large-Area Organic Solar Cells. Tsai PT; Lin KC; Wu CY; Liao CH; Lin MC; Wong YQ; Meng HF; Chang CY; Wang CL; Huang YF; Horng SF; Zan HW; Chao YC ChemSusChem; 2017 Jul; 10(13):2778-2787. PubMed ID: 28516516 [TBL] [Abstract][Full Text] [Related]
13. Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance. Ambade SB; Ambade RB; Bagde SS; Lee SH ACS Appl Mater Interfaces; 2016 Dec; 8(51):35270-35280. PubMed ID: 27976842 [TBL] [Abstract][Full Text] [Related]
14. Emphasizing the Operational Role of a Novel Graphene-Based Ink into High Performance Ternary Organic Solar Cells. Stylianakis MM; Kosmidis DM; Anagnostou K; Polyzoidis C; Krassas M; Kenanakis G; Viskadouros G; Kornilios N; Petridis K; Kymakis E Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906494 [TBL] [Abstract][Full Text] [Related]
15. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode. Wang D; Zhou W; Liu H; Ma Y; Zhang H Nanotechnology; 2016 Aug; 27(33):335203. PubMed ID: 27383462 [TBL] [Abstract][Full Text] [Related]
16. Interface-enhanced organic solar cells with extrapolated T Xu X; Xiao J; Zhang G; Wei L; Jiao X; Yip HL; Cao Y Sci Bull (Beijing); 2020 Feb; 65(3):208-216. PubMed ID: 36659174 [TBL] [Abstract][Full Text] [Related]
17. Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells. Papamakarios V; Polydorou E; Soultati A; Droseros N; Tsikritzis D; Douvas AM; Palilis L; Fakis M; Kennou S; Argitis P; Vasilopoulou M ACS Appl Mater Interfaces; 2016 Jan; 8(2):1194-205. PubMed ID: 26696337 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of Power Conversion Efficiency of Non-Fullerene Organic Solar Cells Using Green Synthesized Au-Ag Nanoparticles. Okai V; Chahul HF; Shikler R Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987263 [TBL] [Abstract][Full Text] [Related]
19. Origin of Efficient Inverted Nonfullerene Organic Solar Cells: Enhancement of Charge Extraction and Suppression of Bimolecular Recombination Enabled by Augmented Internal Electric Field. Wang Y; Wu B; Wu Z; Lan Z; Li Y; Zhang M; Zhu F J Phys Chem Lett; 2017 Nov; 8(21):5264-5271. PubMed ID: 29027803 [TBL] [Abstract][Full Text] [Related]
20. Urea-Doped ZnO Films as the Electron Transport Layer for High Efficiency Inverted Polymer Solar Cells. Wang Z; Wang Z; Zhang R; Guo K; Wu Y; Wang H; Hao Y; Chen G Front Chem; 2018; 6():398. PubMed ID: 30246008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]