BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35520112)

  • 1. Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoO
    Rodiansono ; Dewi HP; Mustikasari K; Astuti MD; Husain S; Sutomo
    RSC Adv; 2022 Apr; 12(21):13319-13329. PubMed ID: 35520112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of Lactic Acid to 1,2-Propanediol over Ru-Based Catalysts.
    Liu K; Huang X; Pidko EA; Hensen EJM
    ChemCatChem; 2018 Feb; 10(4):810-817. PubMed ID: 29541255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly active Ru/TiO
    Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions.
    Rorrer JE; Beckham GT; Román-Leshkov Y
    JACS Au; 2021 Jan; 1(1):8-12. PubMed ID: 34467267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient recycling of polyester wastes to diols using Ru and Mo dual-atom catalyst.
    Tang M; Shen J; Wang Y; Zhao Y; Gan T; Zheng X; Wang D; Han B; Liu Z
    Nat Commun; 2024 Jul; 15(1):5630. PubMed ID: 38965207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO
    Toyao T; Siddiki SM; Touchy AS; Onodera W; Kon K; Morita Y; Kamachi T; Yoshizawa K; Shimizu KI
    Chemistry; 2017 Jan; 23(5):1001-1006. PubMed ID: 27874230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural.
    Chen S; Wojcieszak R; Dumeignil F; Marceau E; Royer S
    Chem Rev; 2018 Nov; 118(22):11023-11117. PubMed ID: 30362725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective hydrogenation of lactic acid to 1,2-propanediol over highly active ruthenium-molybdenum oxide catalysts.
    Takeda Y; Shoji T; Watanabe H; Tamura M; Nakagawa Y; Okumura K; Tomishige K
    ChemSusChem; 2015 Apr; 8(7):1170-8. PubMed ID: 25510671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of levulinic acid to γ-valerolactone over Ru/Al
    Wang R; Chen L; Zhang X; Zhang Q; Li Y; Wang C; Ma L
    RSC Adv; 2018 Dec; 8(71):40989-40995. PubMed ID: 35557899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective hydrodeoxygenation of lignin-derived phenolic monomers to cyclohexanol over tungstated zirconia supported ruthenium catalysts.
    Gan Q; Zhou W; Zhang X; Lin Y; Huang S; Lu GP
    ChemSusChem; 2024 Jun; ():e202400644. PubMed ID: 38923356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst.
    Remón J; Sevilla-Gasca R; Frecha E; Pinilla JL; Suelves I
    Sci Total Environ; 2022 Jun; 825():154044. PubMed ID: 35202688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil.
    Yang C; Nie R; Fu J; Hou Z; Lu X
    Bioresour Technol; 2013 Oct; 146():569-573. PubMed ID: 23973977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.
    Song A; Lu G
    Environ Technol; 2015; 36(9-12):1160-6. PubMed ID: 25358013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.
    Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.
    Duan H; Dong J; Gu X; Peng YK; Chen W; Issariyakul T; Myers WK; Li MJ; Yi N; Kilpatrick AFR; Wang Y; Zheng X; Ji S; Wang Q; Feng J; Chen D; Li Y; Buffet JC; Liu H; Tsang SCE; O'Hare D
    Nat Commun; 2017 Sep; 8(1):591. PubMed ID: 28928359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile and Low-cost Synthesis of Mesoporous Ti-Mo Bi-metal Oxide Catalysts for Biodiesel Production from Esterification of Free Fatty Acids in Jatropha curcas Crude Oil.
    Zhang Q; Li H; Yang S
    J Oleo Sci; 2018 May; 67(5):579-588. PubMed ID: 29628490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Esterification of Levulinic Acid into the Biofuel n-Butyl Levulinate over Nanosized TiO
    Zhou S; Wu L; Bai J; Lei M; Long M; Huang K
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.