These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35520161)

  • 1. Enhanced thermal conductance at the graphene-water interface based on functionalized alkane chains.
    Chen S; Yang M; Liu B; Xu M; Zhang T; Zhuang B; Ding D; Huai X; Zhang H
    RSC Adv; 2019 Jan; 9(8):4563-4570. PubMed ID: 35520161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport across the CoSb
    Yin K; Shi L; Zhong Y; Ma X; Li M; He X
    Phys Chem Chem Phys; 2023 Jan; 25(3):2517-2522. PubMed ID: 36602119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites.
    Cui S; Wu W; Liu C; Wang Y; Chen Q; Liu X
    Nanoscale; 2021 Nov; 13(43):18247-18255. PubMed ID: 34713876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects.
    Liu Y; Hu C; Huang J; Sumpter BG; Qiao R
    J Chem Phys; 2015 Jun; 142(24):244703. PubMed ID: 26133445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.
    Yang J; Pang Y; Huang W; Shaw SK; Schiffbauer J; Pillers MA; Mu X; Luo S; Zhang T; Huang Y; Li G; Ptasinska S; Lieberman M; Luo T
    ACS Nano; 2017 Jun; 11(6):5510-5518. PubMed ID: 28511003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Layer Number-Dependent Heat Transport across Nickel/Graphene/Nickel Interfaces.
    Zhou J; Yang K; Yang B; Zhong B; Yao S; Ma Y; Song J; Fan T; Tang D; Zhu J; Liu Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35237-35245. PubMed ID: 35876687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercalated water layers promote thermal dissipation at bio-nano interfaces.
    Wang Y; Qin Z; Buehler MJ; Xu Z
    Nat Commun; 2016 Sep; 7():12854. PubMed ID: 27659484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Remote Interfacial Phonon (RIP) Scattering in Heat Transport Across Graphene/SiO
    Koh YK; Lyons AS; Bae MH; Huang B; Dorgan VE; Cahill DG; Pop E
    Nano Lett; 2016 Oct; 16(10):6014-6020. PubMed ID: 27585088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management.
    Wang F; Liu Z; Li J; Huang J; Fang L; Wang X; Dai R; Li K; Zhang R; Yang X; Yue Y; Wang Z; Gao Y; Yang K; Zhang L; Xin G
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401586. PubMed ID: 38666496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
    Liu KK; Jiang Q; Tadepalli S; Raliya R; Biswas P; Naik RR; Singamaneni S
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7675-7681. PubMed ID: 28151641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.
    Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials.
    Liang Q; Yao X; Wang W; Liu Y; Wong CP
    ACS Nano; 2011 Mar; 5(3):2392-401. PubMed ID: 21384860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.