These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35520170)

  • 1. Direct production of olefins
    Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y
    RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing Phase Evolution of Co
    Hong X; Zhao Q; Chen Y; Yu Z; Zhou M; Chen Y; Luo W; Wang C; Ta N; Li H; Ye R; Zu X; Liu W; Liu J
    Adv Mater; 2024 Aug; 36(35):e2404046. PubMed ID: 38842820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of intermediate Co
    Liu S; Sun B; Zhang Y; Li J; Resasco DE; Nie L; Wang L
    Chem Commun (Camb); 2019 Jun; 55(46):6595-6598. PubMed ID: 31119229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing FBR to produce olefins from CO reduction using Fe-Mn nanoparticles on reduced graphene oxide catalysts and comparing the performance with SBR.
    Nasser AH; El-Naggar H; Abdelmoneim A
    RSC Adv; 2018 Dec; 8(74):42415-42423. PubMed ID: 35558394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct production of olefins from syngas with ultrahigh carbon efficiency.
    Yu H; Wang C; Lin T; An Y; Wang Y; Chang Q; Yu F; Wei Y; Sun F; Jiang Z; Li S; Sun Y; Zhong L
    Nat Commun; 2022 Oct; 13(1):5987. PubMed ID: 36217004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor.
    Nasser AH; Guo L; ELnaggar H; Wang Y; Guo X; AbdelMoneim A; Tsubaki N
    RSC Adv; 2018 Apr; 8(27):14854-14863. PubMed ID: 35541361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of Co/Co
    Zhao Z; Li Y; Zhu H; Lyu Y; Ding Y
    Chem Commun (Camb); 2023 Mar; 59(26):3827-3837. PubMed ID: 36883229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for the Joint Conversion of CO
    Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J
    Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst.
    Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ XAFS study on the formation process of cobalt carbide by Fischer-Tropsch reaction.
    Liu Y; Wu D; Yu F; Yang R; Zhang H; Sun F; Zhong L; Jiang Z
    Phys Chem Chem Phys; 2019 May; 21(20):10791-10797. PubMed ID: 31086917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation.
    Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective conversion of syngas to light olefins.
    Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X
    Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe
    Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fischer-Tropsch Synthesis of C
    Liang Y; Zhang X; Wang Y; Chen H; Zhang Y; Li J; Wang L
    Inorg Chem; 2024 Jul; 63(28):13079-13085. PubMed ID: 38958051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.