BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35520170)

  • 1. Direct production of olefins
    Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y
    RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing Phase Evolution of Co
    Hong X; Zhao Q; Chen Y; Yu Z; Zhou M; Chen Y; Luo W; Wang C; Ta N; Li H; Ye R; Zu X; Liu W; Liu J
    Adv Mater; 2024 Jun; ():e2404046. PubMed ID: 38842820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of intermediate Co
    Liu S; Sun B; Zhang Y; Li J; Resasco DE; Nie L; Wang L
    Chem Commun (Camb); 2019 Jun; 55(46):6595-6598. PubMed ID: 31119229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing FBR to produce olefins from CO reduction using Fe-Mn nanoparticles on reduced graphene oxide catalysts and comparing the performance with SBR.
    Nasser AH; El-Naggar H; Abdelmoneim A
    RSC Adv; 2018 Dec; 8(74):42415-42423. PubMed ID: 35558394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct production of olefins from syngas with ultrahigh carbon efficiency.
    Yu H; Wang C; Lin T; An Y; Wang Y; Chang Q; Yu F; Wei Y; Sun F; Jiang Z; Li S; Sun Y; Zhong L
    Nat Commun; 2022 Oct; 13(1):5987. PubMed ID: 36217004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor.
    Nasser AH; Guo L; ELnaggar H; Wang Y; Guo X; AbdelMoneim A; Tsubaki N
    RSC Adv; 2018 Apr; 8(27):14854-14863. PubMed ID: 35541361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of Co/Co
    Zhao Z; Li Y; Zhu H; Lyu Y; Ding Y
    Chem Commun (Camb); 2023 Mar; 59(26):3827-3837. PubMed ID: 36883229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for the Joint Conversion of CO
    Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J
    Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst.
    Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ XAFS study on the formation process of cobalt carbide by Fischer-Tropsch reaction.
    Liu Y; Wu D; Yu F; Yang R; Zhang H; Sun F; Zhong L; Jiang Z
    Phys Chem Chem Phys; 2019 May; 21(20):10791-10797. PubMed ID: 31086917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation.
    Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective conversion of syngas to light olefins.
    Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X
    Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe
    Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fischer-Tropsch Synthesis of C
    Liang Y; Zhang X; Wang Y; Chen H; Zhang Y; Li J; Wang L
    Inorg Chem; 2024 Jul; ():. PubMed ID: 38958051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.