These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35520340)

  • 1. Synergistic effects of dopant (Ti or Sn) and oxygen vacancy on the electronic properties of hematite: a DFT investigation.
    Pan H; Ao D; Qin G
    RSC Adv; 2020 Jun; 10(39):23263-23269. PubMed ID: 35520340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation.
    Yang TY; Kang HY; Sim U; Lee YJ; Lee JH; Koo B; Nam KT; Joo YC
    Phys Chem Chem Phys; 2013 Feb; 15(6):2117-24. PubMed ID: 23288103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Ti/Zr,N) codoped hematite for enhancing the photoelectrochemical activity of water splitting.
    Pan H; Meng X; Liu D; Li S; Qin G
    Phys Chem Chem Phys; 2015 Sep; 17(34):22179-86. PubMed ID: 26239189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the roles of oxygen vacancies in hematite for solar water splitting.
    Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z
    Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes.
    Li M; Yang Y; Ling Y; Qiu W; Wang F; Liu T; Song Y; Liu X; Fang P; Tong Y; Li Y
    Nano Lett; 2017 Apr; 17(4):2490-2495. PubMed ID: 28334530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen vacancy mediated single unit cell Bi
    Arif M; Zhang M; Mao Y; Bu Q; Ali A; Qin Z; Muhmood T; Shahnoor ; Liu X; Zhou B; Chen SM
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):276-291. PubMed ID: 32771738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tin and Oxygen-Vacancy Co-doping into Hematite Photoanode for Improved Photoelectrochemical Performances.
    Xiao C; Zhou Z; Li L; Wu S; Li X
    Nanoscale Res Lett; 2020 Mar; 15(1):54. PubMed ID: 32130553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.
    Annamalai A; Lee HH; Choi SH; Lee SY; Gracia-Espino E; Subramanian A; Park J; Kong KJ; Jang JS
    Sci Rep; 2016 Mar; 6():23183. PubMed ID: 27005757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation.
    Engel J; Tuller HL
    Phys Chem Chem Phys; 2014 Jun; 16(23):11374-80. PubMed ID: 24797819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancy and doping atom effect on electronic structure and optical properties of Cd
    Tang M; Shang J; Zhang Y
    RSC Adv; 2018 Jan; 8(2):640-646. PubMed ID: 35538950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of doping Ti on the vacancy trapping mechanism for helium in ZrCo from first principles.
    Wang Q; Kong X; Yu Y; Han H; Sang G; Zhang G; Yi Y; Gao T
    Phys Chem Chem Phys; 2019 Oct; 21(37):20909-20918. PubMed ID: 31517356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the optoelectronic properties of hematite with rhodium doping for photoelectrochemical water splitting using density functional theory approach.
    Rauf A; Adil M; Mian SA; Rahman G; Ahmed E; Mohy Ud Din Z; Qun W
    Sci Rep; 2021 Jan; 11(1):41. PubMed ID: 33420147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ti Doping on Hematite Photoanodes: More Surface States.
    Niu Y; Zhou Y; Niu P; Shen H; Ma Y
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3437-3446. PubMed ID: 30744771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.