These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35520342)

  • 1. Investigation of time-temperature dependency of heat capacity enhancement in molten salt nanofluids.
    Rizvi SMM; El Far B; Nayfeh Y; Shin D
    RSC Adv; 2020 Jun; 10(39):22972-22982. PubMed ID: 35520342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Synthesis of Alumina Nanoparticles in a Binary Carbonate Salt Eutectic for Enhancing Heat Capacity.
    Nayfeh Y; Rizvi SMM; El Far B; Shin D
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33120917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the specific heat capacity enhancement of ternary carbonate nanofluids with SiO
    Sang L; Ai W; Liu T; Wu Y; Ma C
    RSC Adv; 2019 Feb; 9(10):5288-5294. PubMed ID: 35515947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Graphite-Dispersed Li
    Karim MA; Islam M; Arthur O; Yarlagadda PK
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets.
    Xie Q; Zhu Q; Li Y
    Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of convective heat transfer with Al2O3 nanofluids in the turbulent flow region.
    Kwon Y; Lee K; Park M; Koo K; Lee J; Doh Y; Lee S; Kim D; Jung Y
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7902-5. PubMed ID: 24266161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced thermophysical properties via PAO superstructure.
    Pournorouz Z; Mostafavi A; Pinto A; Bokka A; Jeon J; Shin D
    Nanoscale Res Lett; 2017 Dec; 12(1):29. PubMed ID: 28078609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage.
    Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM
    Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid.
    Li Z; Cui L; Li B; Du X
    Phys Chem Chem Phys; 2021 Jun; 23(23):13181-13189. PubMed ID: 34085072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.
    Mondragón R; Juliá JE; Cabedo L; Navarrete N
    Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures.
    Lasfargues M; Geng Q; Cao H; Ding Y
    Nanomaterials (Basel); 2015 Jun; 5(3):1136-1146. PubMed ID: 28347056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt.
    An X; Cheng J; Zhang P; Tang Z; Wang J
    Faraday Discuss; 2016 Aug; 190():327-38. PubMed ID: 27203821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of copper ions on transformation of organic sulfur in cationic exchange resins in Li
    Zhang Z; Xue Y; Wang YL; Xu WD; Yan YD; Zheng YH; Ma FQ; Li GQ
    Chemosphere; 2023 Aug; 331():138837. PubMed ID: 37146777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.
    Haque AKMM; Kim S; Kim J; Noh J; Huh S; Choi B; Chung H; Jeong H
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1730-1740. PubMed ID: 29448652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.
    Prakash BS; Varma KB
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5762-9. PubMed ID: 19198302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discussion on the thermal conductivity enhancement of nanofluids.
    Xie H; Yu W; Li Y; Chen L
    Nanoscale Res Lett; 2011 Feb; 6(1):124. PubMed ID: 21711638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications.
    Lasfargues M; Bell A; Ding Y
    J Nanopart Res; 2016; 18():150. PubMed ID: 27358585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation of Thermal and Pressure Performance in Computer Cooling Systems Using Different Types of Nanofluids.
    Alfaryjat A; Miron L; Pop H; Apostol V; Stefanescu MF; Dobrovicescu A
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.