These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35520343)

  • 21. Continuous fabrication of core-shell aerogel microparticles using microfluidic flows.
    Teo N; Jin C; Kulkarni A; Jana SC
    J Colloid Interface Sci; 2020 Mar; 561():772-781. PubMed ID: 31761464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vitro Modeling of Emulsification of Silicone Oil as Intraocular Tamponade Using Microengineered Eye-on-a-Chip.
    Chan YK; Sy KH; Wong CY; Man PK; Wong D; Shum HC
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):3314-9. PubMed ID: 26024114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheology of double emulsions.
    Pal R
    J Colloid Interface Sci; 2007 Mar; 307(2):509-15. PubMed ID: 17196608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monodisperse double emulsions generated from a microcapillary device.
    Utada AS; Lorenceau E; Link DR; Kaplan PD; Stone HA; Weitz DA
    Science; 2005 Apr; 308(5721):537-41. PubMed ID: 15845850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions.
    Czekalska MA; Jacobs AMJ; Toprakcioglu Z; Kong L; Baumann KN; Gang H; Zubaite G; Ye R; Mu B; Levin A; Huck WTS; Knowles TPJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6739-6747. PubMed ID: 33522221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design insights for upscaling spontaneous microfluidic emulsification devices based on behavior of the Upscaled Partitioned EDGE device.
    Ten Klooster S; Berton-Carabin C; Schroën K
    Food Res Int; 2023 Feb; 164():112365. PubMed ID: 36738018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence.
    Abedi S; Suteria NS; Chen CC; Vanapalli SA
    J Colloid Interface Sci; 2019 Jan; 533():59-70. PubMed ID: 30145441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale.
    Heiligenthal L; van der Loh M; Polack M; Blaha ME; Moschütz S; Keim A; Sträter N; Belder D
    Anal Bioanal Chem; 2022 Sep; 414(23):6977-6987. PubMed ID: 35995875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous Formation of Double Emulsions at Particle-Laden Interfaces.
    Bazazi P; Hejazi SH
    J Colloid Interface Sci; 2021 Apr; 587():510-521. PubMed ID: 33406465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions.
    Leister N; Vladisavljević GT; Karbstein HP
    J Colloid Interface Sci; 2022 Apr; 611():451-461. PubMed ID: 34968964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production.
    Teston E; Hingot V; Faugeras V; Errico C; Bezagu M; Tanter M; Couture O
    Biomed Microdevices; 2018 Oct; 20(4):94. PubMed ID: 30377821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells.
    Lee SS; Abbaspourrad A; Kim SH
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1294-300. PubMed ID: 24381982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.
    Ma S; Huck WT; Balabani S
    Lab Chip; 2015 Nov; 15(22):4291-301. PubMed ID: 26394745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules.
    Chu LY; Xie R; Zhu JH; Chen WM; Yamaguchi T; Nakao S
    J Colloid Interface Sci; 2003 Sep; 265(1):187-96. PubMed ID: 12927182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions.
    Nawar S; Stolaroff JK; Ye C; Wu H; Nguyen DT; Xin F; Weitz DA
    Lab Chip; 2020 Jan; 20(1):147-154. PubMed ID: 31782446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.