BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 3552038)

  • 1. Transition-state structures for N-glycoside hydrolysis of AMP by acid and by AMP nucleosidase in the presence and absence of allosteric activator.
    Mentch F; Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):921-30. PubMed ID: 3552038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic and allosteric mechanism of AMP nucleosidase from primary, beta-secondary, and multiple heavy atom kinetic isotope effects.
    Parkin DW; Schramm VL
    Biochemistry; 1987 Feb; 26(3):913-20. PubMed ID: 3552037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of allosteric activation on the primary and secondary kinetic isotope effects for three AMP nucleosidases.
    Parkin DW; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9418-25. PubMed ID: 6378909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects.
    Parkin DW; Mentch F; Banks GA; Horenstein BA; Schramm VL
    Biochemistry; 1991 May; 30(18):4586-94. PubMed ID: 2021651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and activation for allosteric adenosine 5'-monophosphate nucleosidase. Kinetic alpha-deuterium isotope effects for the enzyme-catalyzed hydrolysis of adenosine 5'-monophosphate and nicotinamide mononucleotide.
    Skoog MT
    J Biol Chem; 1986 Apr; 261(10):4451-9. PubMed ID: 3485632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMP nucleosidase: kinetic mechanism and thermodynamics.
    DeWolf WE; Emig FA; Schramm VL
    Biochemistry; 1986 Jul; 25(14):4132-40. PubMed ID: 3741845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic potential surface analysis of the transition state for AMP nucleosidase and for formycin 5'-phosphate, a transition-state inhibitor.
    Ehrlich JI; Schramm VL
    Biochemistry; 1994 Aug; 33(30):8890-6. PubMed ID: 8043576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition-state analysis of nucleoside hydrolase from Crithidia fasciculata.
    Horenstein BA; Parkin DW; Estupiñán B; Schramm VL
    Biochemistry; 1991 Nov; 30(44):10788-95. PubMed ID: 1931998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of nucleotides with specific radiolabels in ribose. Primary 14C and secondary 3H kinetic isotope effects on acid-catalyzed glycosidic bond hydrolysis of AMP, dAMP, and inosine.
    Parkin DW; Leung HB; Schramm VL
    J Biol Chem; 1984 Aug; 259(15):9411-7. PubMed ID: 6746654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition state analysis of adenosine nucleosidase from yellow lupin (Lupinus luteus).
    Bates C; Kendrick Z; McDonald N; Kline PC
    Phytochemistry; 2006 Jan; 67(1):5-12. PubMed ID: 16300810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic isotope effects of nucleoside hydrolase from Escherichia coli.
    Hunt C; Gillani N; Farone A; Rezaei M; Kline PC
    Biochim Biophys Acta; 2005 Aug; 1751(2):140-9. PubMed ID: 16027052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of the molecular electrostatic potential surface of an enzymatic transition state with novel transition-state inhibitors.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Sep; 32(38):9917-25. PubMed ID: 8399161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic nature of the transition state for nucleoside hydrolase. A blueprint for inhibitor design.
    Horenstein BA; Schramm VL
    Biochemistry; 1993 Jul; 32(28):7089-97. PubMed ID: 8343502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic properties of allosteric adenosine monophosphate nucleosidase from Azotobacter vinelandii.
    Schramm VL
    J Biol Chem; 1974 Mar; 249(6):1729-36. PubMed ID: 4361821
    [No Abstract]   [Full Text] [Related]  

  • 18. Pre-steady-state transition-state analysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase.
    Kline PC; Schramm VL
    Biochemistry; 1995 Jan; 34(4):1153-62. PubMed ID: 7827065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMP nucleosidase from Azotobacter vinelandii. 3. Kinetics of allosteric interactions.
    Yoshino M; Ogasawara N
    J Biochem; 1972 Aug; 72(2):223-33. PubMed ID: 4345428
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion-dependent activation of AMP nucleosidase from Azotobacter vinelandii.
    Murakami K; Yoshino M
    Biochim Biophys Acta; 1980; 613(1):153-9. PubMed ID: 7378416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.