These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35520403)

  • 1. A stable and highly sensitive room-temperature liquefied petroleum gas sensor based on nano-cubes/cuboids of zinc antimonate.
    Singh S; Singh A; Singh A; Tandon P
    RSC Adv; 2020 May; 10(34):20349-20357. PubMed ID: 35520403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured cobalt antimonate: a fast responsive and highly stable sensing material for liquefied petroleum gas detection at room temperature.
    Singh S; Singh A; Singh A; Rathore S; Yadav BC; Tandon P
    RSC Adv; 2020 Sep; 10(56):33770-33781. PubMed ID: 35519027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistive room temperature LPG sensor based on a graphene/CdO nanocomposite.
    Goutham S; Jayarambabu N; Sandeep C; Sadasivuni KK; Kumar DS; Rao KV
    Mikrochim Acta; 2019 Jan; 186(2):62. PubMed ID: 30627873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A holistic review on the recent trends, advances, and challenges for high-precision room temperature liquefied petroleum gas sensors.
    Tladi BC; Kroon RE; Swart HC; Motaung DE
    Anal Chim Acta; 2023 May; 1253():341033. PubMed ID: 36965988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Highly Sensitive and Room Temperature CNTs/SnO
    Zhao Y; Zhang J; Wang Y; Chen Z
    Nanoscale Res Lett; 2020 Feb; 15(1):40. PubMed ID: 32060823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive ethylene glycol-doped PEDOT-PSS organic thin films for LPG sensing.
    Pasha A; Khasim S; Al-Hartomy OA; Lakshmi M; Manjunatha KG
    RSC Adv; 2018 May; 8(32):18074-18083. PubMed ID: 35542062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of high-sensitivity La-doped ZnO sensors for CO
    Abdelkarem K; Saad R; El Sayed AM; Fathy MI; Shaban M; Hamdy H
    Sci Rep; 2023 Oct; 13(1):18398. PubMed ID: 37884608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature LPG resistive sensor based on the use of a few-layer graphene/SnO
    Goutham S; Bykkam S; Sadasivuni KK; Kumar DS; Ahmadipour M; Ahmad ZA; Rao KV
    Mikrochim Acta; 2017 Dec; 185(1):69. PubMed ID: 29594642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.
    Fu Y; Nie Y; Zhao Y; Wang P; Xing L; Zhang Y; Xue X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10482-90. PubMed ID: 25915174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CdS nanodroplets over silica microballs for efficient room-temperature LPG detection.
    Saxena N; Kumar P; Gupta V
    Nanoscale Adv; 2019 Jun; 1(6):2382-2391. PubMed ID: 36131970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative investigation of gas sensing performance of liquefied petroleum gas using green reduced graphene oxide-based sensors.
    Olorunkosebi AA; Olumurewa KO; Fasakin O; Adedeji AV; Taleatu B; Olofinjana B; Eleruja MA
    RSC Adv; 2023 May; 13(24):16630-16642. PubMed ID: 37274401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEI-Functionalized Carbon Nanotube Thin Film Sensor for CO
    Han M; Jung S; Lee Y; Jung D; Kong SH
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium-Doped P-Type WO
    He Y; Shi X; Chen K; Yang X; Chen J
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.
    Chaisitsak S
    Sensors (Basel); 2011; 11(7):7127-40. PubMed ID: 22164007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SILAR-Deposited CuO Nanostructured Films Doped with Zinc and Sodium for Improved CO
    Saad R; Ahmed AM; Abdelkarem K; Zayed M; Faidey ZM; Al-Senani GM; Shaban M; Tammam MT; Hamdy H
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and Simple Oscillatory Conduction in Ferrite Gas Sensors: Gas-Sensing Mechanisms, Long-Term Gas Monitoring, Heat Transfer, and Other Anomalies.
    Gumbi SW; Mkwae PS; Kortidis I; Kroon RE; Swart HC; Moyo T; Nkosi SS
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43231-43249. PubMed ID: 32794724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p-/n-Type Switching in the Ag/BTO/TiO
    Paul D; Aamir L; Aslam A; Rathore D
    Langmuir; 2023 Aug; 39(33):11879-11887. PubMed ID: 37562969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of ZnO-TiO
    Sonker RK; Yadav BC; Gupta V; Tomar M
    J Hazard Mater; 2019 May; 370():126-137. PubMed ID: 30528466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.
    Nakate UT; Patil P; Bulakhe RN; Lokhande CD; Kale SN; Naushad M; Mane RS
    J Colloid Interface Sci; 2016 Oct; 480():109-117. PubMed ID: 27421113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physisorption-Mediated Charge Transfer in TiS
    Manzoor S; Talib M; Novikov SM; Arsenin AV; Volkov VS; Mishra P
    ACS Sens; 2023 Sep; 8(9):3435-3447. PubMed ID: 37698838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.