These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35520424)

  • 21. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries.
    Wu F; Zhang M; Bai Y; Wang X; Dong R; Wu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12554-12561. PubMed ID: 30875192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method.
    Lu H; Ai F; Jia Y; Tang C; Zhang X; Huang Y; Yang H; Cao Y
    Small; 2018 Sep; 14(39):e1802694. PubMed ID: 30175558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulate Phosphorus Configuration in High P-Doped Hard Carbon as a Superanode for Sodium Storage.
    Wang X; Hou M; Shi Z; Liu X; Mizota I; Lou H; Wang B; Hou X
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12059-12068. PubMed ID: 33656334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-Standing, Self-Doped Porous Hard Carbon: Na-Ion Storage with Enhanced Initial Coulombic Efficiency.
    Ghani U; Iqbal N; Aboalhassan AA; Zhou C; Liu B; Li J; Fang Y; Aftab T; Gu J; Liu Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47507-47516. PubMed ID: 36228136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbonization of Corn Leaf Waste for Na-Ion Storage Application Using Water-Soluble Carboxymethyl Cellulose Binder.
    Li R; Kamali AR
    Gels; 2023 Aug; 9(9):. PubMed ID: 37754383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon skeleton materials derived from rare earth phthalocyanines (MPcs) (M = Yb, La) used as high performance anode materials for lithium-ion batteries.
    Jiang T; Cao M; Chen J; Wang L; Zhang Q; Wang H; Luo J
    Dalton Trans; 2023 May; 52(20):6641-6655. PubMed ID: 37114425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailoring a Phenolic Resin Precursor by Facile Pre-oxidation Tactics to Realize a High-Initial-Coulombic-Efficiency Hard Carbon Anode for Sodium-Ion Batteries.
    Zhang G; Zhang L; Ren Q; Yan L; Zhang F; Lv W; Shi Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31650-31659. PubMed ID: 34189907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries.
    He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jute-Fiber Precursor-Derived Low-Cost Sustainable Hard Carbon with Varying Micro/Mesoporosity and Distinct Storage Mechanisms for Sodium-Ion and Potassium-Ion Batteries.
    ; Verma P; Puravankara S
    Langmuir; 2022 Dec; 38(50):15703-15713. PubMed ID: 36490218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage.
    Yin X; Zhao Y; Wang X; Feng X; Lu Z; Li Y; Long H; Wang J; Ning J; Zhang J
    Small; 2022 Feb; 18(5):e2105568. PubMed ID: 34850549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hard Carbons for Use as Electrodes in Li-S and Li-ion Batteries.
    Pozio A; Di Carli M; Aurora A; Falconieri M; Della Seta L; Prosini PP
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery.
    Kamiyama A; Kubota K; Igarashi D; Youn Y; Tateyama Y; Ando H; Gotoh K; Komaba S
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5114-5120. PubMed ID: 33300173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries.
    Yoon D; Hwang J; Chang W; Kim J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):569-581. PubMed ID: 29219295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucosamine derived hydrothermal carbon electrodes for aqueous electrolyte energy storage systems.
    Ünal B; Demir Çakan R
    Turk J Chem; 2021; 45(6):1678-1689. PubMed ID: 38144600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries.
    Gan Q; Qin N; Gu S; Wang Z; Li Z; Liao K; Zhang K; Lu L; Xu Z; Lu Z
    Small Methods; 2021 Sep; 5(9):e2100580. PubMed ID: 34928046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries.
    Wang K; Jin Y; Sun S; Huang Y; Peng J; Luo J; Zhang Q; Qiu Y; Fang C; Han J
    ACS Omega; 2017 Apr; 2(4):1687-1695. PubMed ID: 31457533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A life cycle assessment of hard carbon anodes for sodium-ion batteries.
    Liu H; Xu Z; Guo Z; Feng J; Li H; Qiu T; Titirici M
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200340. PubMed ID: 34510922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances.
    Zhao Q; Meng Y; Yang L; He X; He B; Liu Y; Xiao D
    J Colloid Interface Sci; 2019 Sep; 551():61-71. PubMed ID: 31075634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries.
    Zhang Y; Li X; Dong P; Wu G; Xiao J; Zeng X; Zhang Y; Sun X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42796-42803. PubMed ID: 30461257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.