These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35520543)
1. Polysaccharides from Zhang J; Liu N; Sun C; Sun D; Wang Y RSC Adv; 2019 Jun; 9(31):17988-17994. PubMed ID: 35520543 [TBL] [Abstract][Full Text] [Related]
2. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Long T; Liu Z; Shang J; Zhou X; Yu S; Tian H; Bao Y Int J Biol Macromol; 2018 May; 111():813-821. PubMed ID: 29343453 [TBL] [Abstract][Full Text] [Related]
3. Polygonatum Polysaccharide Regulates Macrophage Polarization and Improves LPS-Induced Acute Lung Injury through TLR4-MAPK/NF- Zhou W; Hong J; Liu T; Li M; Jin H; Wang X Can Respir J; 2022; 2022():2686992. PubMed ID: 35874106 [TBL] [Abstract][Full Text] [Related]
4. Protective effect of Polygonatum sibiricum polysaccharides on gentamicin-induced acute kidney injury in rats via inhibiting p38 MAPK/ATF2 pathway. Han C; Sun T; Liu Y; Fan G; Zhang W; Liu C Int J Biol Macromol; 2020 May; 151():595-601. PubMed ID: 32057862 [TBL] [Abstract][Full Text] [Related]
5. TMT-based quantitative proteomics unveils the protective mechanism of Polygonatum sibiricum polysaccharides on septic acute liver injury. Xiao L; Ping Y; Sun S; Xu R; Zhou X; Wu H; Qi L J Proteomics; 2025 Jan; 310():105331. PubMed ID: 39427987 [TBL] [Abstract][Full Text] [Related]
6. Characterization and Immunological Activities of Polysaccharides from Polygonatum sibiricum. Chen Z; Liu J; Kong X; Li H Biol Pharm Bull; 2020; 43(6):959-967. PubMed ID: 32475918 [TBL] [Abstract][Full Text] [Related]
7. Wang W; Li S; Song M J Recept Signal Transduct Res; 2022 Apr; 42(2):189-196. PubMed ID: 33554697 [TBL] [Abstract][Full Text] [Related]
8. Polygonatum sibiricum Polysaccharide Inhibited Liver Cancer in a Simulated Tumor Microenvironment by Eliminating TLR4/STAT3 Pathway. Xu Y; Guo Y; Lu C; Yu L; Fang C; Li C Biol Pharm Bull; 2023; 46(9):1249-1259. PubMed ID: 37661404 [TBL] [Abstract][Full Text] [Related]
9. The p38 MAPK inhibitor JLU1124 inhibits the inflammatory response induced by lipopolysaccharide through the MAPK-NF-κB pathway in RAW264.7 macrophages. Li XN; Su J; Zhao L; Xiang JB; Wang W; Liu F; Li HY; Zhong JT; Bai X; Sun LK Int Immunopharmacol; 2013 Nov; 17(3):785-92. PubMed ID: 24070708 [TBL] [Abstract][Full Text] [Related]
10. Identification of the protective effect of Zhang Z; Yang B; Huang J; Li W; Yi P; Yi M; Peng W Pharm Biol; 2021 Dec; 59(1):347-366. PubMed ID: 33794121 [TBL] [Abstract][Full Text] [Related]
11. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-κB and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. Li D; Chen J; Ye J; Zhai X; Song J; Jiang C; Wang J; Zhang H; Jia X; Zhu F J Ethnopharmacol; 2017 Jan; 196():66-74. PubMed ID: 27989509 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Effect of Polydatin and Ye G; Zhao Y; Zhu J; Zhang Z; Wang Q; Jiang X; Wang Z Evid Based Complement Alternat Med; 2022; 2022():3885153. PubMed ID: 35845572 [TBL] [Abstract][Full Text] [Related]
13. Recombinant CC16 protein inhibits the production of pro-inflammatory cytokines via NF-κB and p38 MAPK pathways in LPS-activated RAW264.7 macrophages. Pang M; Yuan Y; Wang D; Li T; Wang D; Shi X; Guo M; Wang C; Zhang X; Zheng G; Yu B; Wang H Acta Biochim Biophys Sin (Shanghai); 2017 May; 49(5):435-443. PubMed ID: 28338974 [TBL] [Abstract][Full Text] [Related]
14. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Liu N; Dong Z; Zhu X; Xu H; Zhao Z Int J Biol Macromol; 2018 Feb; 107(Pt A):796-802. PubMed ID: 28939510 [TBL] [Abstract][Full Text] [Related]
15. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Endale M; Park SC; Kim S; Kim SH; Yang Y; Cho JY; Rhee MH Immunobiology; 2013 Dec; 218(12):1452-67. PubMed ID: 23735482 [TBL] [Abstract][Full Text] [Related]
16. Hostaflavone A from Hosta plantaginea (Lam.) Asch. blocked NF-κB/iNOS/COX-2/MAPKs/Akt signaling pathways in LPS-induced RAW 264.7 macrophages. Yang L; Cao L; Li C; Li X; Wang J; Chen H; He J J Ethnopharmacol; 2022 Jan; 282():114605. PubMed ID: 34506938 [TBL] [Abstract][Full Text] [Related]
17. Cnidilide, an alkylphthalide isolated from the roots of Cnidium officinale, suppresses LPS-induced NO, PGE Lee WS; Shin JS; Jang DS; Lee KT Int Immunopharmacol; 2016 Nov; 40():146-155. PubMed ID: 27591413 [TBL] [Abstract][Full Text] [Related]
18. 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Shao J; Li Y; Wang Z; Xiao M; Yin P; Lu Y; Qian X; Xu Y; Liu J Int Immunopharmacol; 2013 Oct; 17(2):216-28. PubMed ID: 23810444 [TBL] [Abstract][Full Text] [Related]
19. Polysaccharide from alfalfa activates RAW 264.7 macrophages through MAPK and NF-κB signaling pathways. Xie Y; Wang L; Sun H; Wang Y; Yang Z; Zhang G; Jiang S; Yang W Int J Biol Macromol; 2019 Apr; 126():960-968. PubMed ID: 30590152 [TBL] [Abstract][Full Text] [Related]
20. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-κB and JNK/p38 MAPK. Yeom M; Kim JH; Min JH; Hwang MK; Jung HS; Sohn Y J Ethnopharmacol; 2015 Dec; 176():394-401. PubMed ID: 26560439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]