BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35520588)

  • 1. Plasmonic nanoprobes based on the shape transition of Au/Ag core-shell nanorods to dumbbells for sensitive Hg-ion detection.
    Chen L; Li R; Yang P
    RSC Adv; 2019 Jun; 9(31):17783-17790. PubMed ID: 35520588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver/gold core-shell nanoprism-based plasmonic nanoprobes for highly sensitive and selective detection of hydrogen sulfide.
    Yang X; Ren Y; Gao Z
    Chemistry; 2015 Jan; 21(3):988-92. PubMed ID: 25428438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au@Ag Nanopencil with Au Tip and Au@Ag Rod: Multimodality Plasmonic Nanoprobe based on Asymmetric Etching for the Detection of SCN
    He Z; Zhu J; Li X; Weng GJ; Li JJ; Zhao JW
    Small; 2023 Sep; 19(38):e2302302. PubMed ID: 37211700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric determination of mercury(II) ion based on DNA-assisted amalgamation: a comparison study on gold, silver and Ag@Au Nanoplates.
    Zhang Y; Zhang L; Wang L; Wang G; Komiyama M; Liang X
    Mikrochim Acta; 2019 Oct; 186(11):713. PubMed ID: 31650278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching properties of Au-Ag-Pt tri-metallic nanorod: The application in specific detection of alpha-fetoprotein.
    Zhu J; Meng LN; Li X; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121714. PubMed ID: 35940070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric Detection of Sulfide Anions via Redox-Modulated Surface Chemistry and Morphology of Au-Hg Nanorods.
    Zhu X; Liu C; Liu J
    Int J Anal Chem; 2019; 2019():8961837. PubMed ID: 31186647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing.
    Loiseau A; Zhang L; Hu D; Salmain M; Mazouzi Y; Flack R; Liedberg B; Boujday S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46462-46471. PubMed ID: 31744295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods.
    Kim D; Choi E; Lee C; Choi Y; Kim H; Yu T; Piao Y
    Nano Converg; 2019 Oct; 6(1):34. PubMed ID: 31641881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor.
    Huang D; Hu T; Chen N; Zhang W; Di J
    Anal Chim Acta; 2014 May; 825():51-6. PubMed ID: 24767150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au core/Au-Ag alloy shell nanorods: composition- and shape-tailored optical responses.
    Liu J; Feng L; Hu Z; Hu X; Hou S; Wen T; Liu W; Zhang K; Zhu X; Ji Y; Wang Q; Guo Y; Wu X
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1006-10. PubMed ID: 23646560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (Gold triangular nanoplate core)@(silver shell) nanostructures as highly sensitive and selective plasmonic nanoprobes for hydrogen sulfide detection.
    Mi H; Wang S; Yin H; Wang L; Mei L; Zhu X; Zhang N; Jiang R
    Nanoscale; 2020 Oct; 12(39):20250-20257. PubMed ID: 33026023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Au@Ag core-shell nanorods with tunable optical properties.
    Miryousefi N; Varmazyad M; Ghasemi F
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38865976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed-mediated growth of Au@Ag core-shell nanorods for the detection of ellagic acid in whitening cosmetics.
    Wang Y; Zeng Y; Fu W; Zhang P; Li L; Ye C; Yu L; Zhu X; Zhao S
    Anal Chim Acta; 2018 Mar; 1002():97-104. PubMed ID: 29306418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au-Ag core-shell composite nanoparticles as a selective and sensitive plasmonic chemical probe for l-cysteine detection in
    Saha A; Khalkho BR; Deb MK
    RSC Adv; 2021 Jun; 11(33):20380-20390. PubMed ID: 35479888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-color tuning of surface plasmon resonance by compositional variation of Au@Ag core-shell nanocubes with sulfides.
    Park G; Lee C; Seo D; Song H
    Langmuir; 2012 Jun; 28(24):9003-9. PubMed ID: 22304325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.