These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35520946)
1. Influence of surface tension-driven network parameters on backflow strength. Lee Y; Seder I; Kim SJ RSC Adv; 2019 Mar; 9(18):10345-10351. PubMed ID: 35520946 [TBL] [Abstract][Full Text] [Related]
2. Backflow effects on mass flow gain factor in a centrifugal pump. Kang W; Zhou L; Liu D; Wang Z Sci Prog; 2021; 104(2):36850421998865. PubMed ID: 33890814 [TBL] [Abstract][Full Text] [Related]
3. Preprogrammed capillarity to passively control system-level sequential and parallel microfluidic flows. Kim SJ; Paczesny S; Takayama S; Kurabayashi K Lab Chip; 2013 Jun; 13(11):2091-8. PubMed ID: 23598742 [TBL] [Abstract][Full Text] [Related]
4. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow. Xia L; Dutta D Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397 [TBL] [Abstract][Full Text] [Related]
6. Microchip injection and separation anomalies due to pressure effects. Crabtree HJ; Cheong EC; Tilroe DA; Backhouse CJ Anal Chem; 2001 Sep; 73(17):4079-86. PubMed ID: 11569795 [TBL] [Abstract][Full Text] [Related]
7. A robust, portable and backflow-free micromixing device based on both capillary- and vacuum-driven flows. Zhai Y; Wang A; Koh D; Schneider P; Oh KW Lab Chip; 2018 Jan; 18(2):276-284. PubMed ID: 29199733 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies. Sun YS Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318 [TBL] [Abstract][Full Text] [Related]
9. A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow. Xia L; Dutta D Anal Chem; 2012 Nov; 84(22):10058-63. PubMed ID: 23092536 [TBL] [Abstract][Full Text] [Related]
10. Flow control in a laminate capillary-driven microfluidic device. Jang I; Kang H; Song S; Dandy DS; Geiss BJ; Henry CS Analyst; 2021 Mar; 146(6):1932-1939. PubMed ID: 33492316 [TBL] [Abstract][Full Text] [Related]
11. Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow. Lai CY; Zheng Z; Dressaire E; Ramon GZ; Huppert HE; Stone HA Phys Rev Lett; 2016 Dec; 117(26):268001. PubMed ID: 28059547 [TBL] [Abstract][Full Text] [Related]
12. Flow rate analysis of a surface tension driven passive micropump. Berthier E; Beebe DJ Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274 [TBL] [Abstract][Full Text] [Related]
13. High speed droplet-based delivery system for passive pumping in microfluidic devices. Resto PJ; Mogen B; Wu F; Berthier E; Beebe D; Williams J J Vis Exp; 2009 Sep; (31):. PubMed ID: 19727061 [TBL] [Abstract][Full Text] [Related]
14. Backflow length predictions during flow-controlled infusions using a nonlinear biphasic finite element model. Orozco GA; Smith JH; García JJ Med Biol Eng Comput; 2014 Oct; 52(10):841-9. PubMed ID: 25154980 [TBL] [Abstract][Full Text] [Related]
16. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves. Zhang R; You F; Lv Z; He Z; Wang H; Huang L Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973449 [TBL] [Abstract][Full Text] [Related]
17. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lin SC; Yen PW; Peng CC; Tung YC Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751 [TBL] [Abstract][Full Text] [Related]
19. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis. Xing Y; Nourmohammadzadeh M; Elias JE; Chan M; Chen Z; McGarrigle JJ; Oberholzer J; Wang Y Biomed Microdevices; 2016 Oct; 18(5):80. PubMed ID: 27534648 [TBL] [Abstract][Full Text] [Related]
20. Effect of a dual inlet channel on cell loading in microfluidics. Yun H; Kim K; Lee WG Biomicrofluidics; 2014 Nov; 8(6):066501. PubMed ID: 25553201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]