BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35521131)

  • 1. Nutrient removal by
    Yang Y; Zhang X; Xiao J; Chu S; Huang Z
    RSC Adv; 2020 Aug; 10(49):29139-29146. PubMed ID: 35521131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic nutrient removal potential of a novel submerged macrophyte Rotala rotundifolia, and its growth and physiological response to reduced light available.
    Chu S; Zhang X; Xiao J; Chen R
    J Environ Manage; 2021 Sep; 293():112965. PubMed ID: 34102497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and physiological response of amphibious Rotala rotundifolia from emergent to submerged form.
    Zhao W; Xiao J; Lin G; Peng Q; Chu S
    J Plant Res; 2024 Mar; 137(2):279-291. PubMed ID: 38270713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel submerged Rotala rotundifolia, its growth characteristics and remediation potential for eutrophic waters.
    Gu C; Li F; Xiao J; Chu S; Song S; Wong MH
    Sci Rep; 2019 Oct; 9(1):14855. PubMed ID: 31619734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the nutrient removal effectiveness of floating treatment wetlands applied to urban retention ponds.
    Wang CY; Sample DJ
    J Environ Manage; 2014 May; 137():23-35. PubMed ID: 24594756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of Nutrient Loadings on the Regulation of Water Nitrogen and Phosphorus by
    Zhou YW; Xu XG; Han RM; Zhou XH; Feng DY; Li ZC; Wang GX
    Huan Jing Ke Xue; 2018 Mar; 39(3):1180-1187. PubMed ID: 29965462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.
    Millett J; Foot GW; Svensson BM
    Sci Total Environ; 2015 Apr; 512-513():631-636. PubMed ID: 25655989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Remediation performance and mechanism of aquatic plants for iron polluted water].
    Chu SY; Jing CX; Zhang XY; Huang ZD; Xiao JB
    Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):608-614. PubMed ID: 32476355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal effect and characteristics of integrated floating beds at low temperature.
    Zhang H; Liu H; Cao W
    Environ Res; 2022 Mar; 204(Pt B):112139. PubMed ID: 34592253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-Aminolevulinic Acid Improves Nutrient Uptake and Endogenous Hormone Accumulation, Enhancing Low-Temperature Stress Tolerance in Cucumbers.
    Anwar A; Yan Y; Liu Y; Li Y; Yu X
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30380613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of light emitting diodes on shoot regeneration in vitro from shoot tip tissues of
    Dogan M
    Biotech Histochem; 2020 Apr; 95(3):225-232. PubMed ID: 31650867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal.
    Zhu H; Zhou QW; Yan BX; Liang YX; Yu XF; Gerchman Y; Cheng XW
    Water Sci Technol; 2018 Feb; 77(3-4):829-837. PubMed ID: 29431728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and nutrient uptake of Myriophyllum spicatum under different nutrient conditions and its potential ecosystem services in an enclosed sea area in the East China Sea.
    Bao Y; Huo Y; Duan Y; He P; Wu M; Yang N; Sun B
    Mar Pollut Bull; 2020 Feb; 151():110801. PubMed ID: 32056596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidative Flavonol Glucuronides and Anti-HBsAg Flavonol from Rotala rotundifolia.
    Zhang LJ; Yeh SF; Yu YT; Kuo LM; Kuo YH
    J Tradit Complement Med; 2011 Oct; 1(1):57-63. PubMed ID: 24716106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.
    Yu Q; Wang HZ; Li Y; Shao JC; Liang XM; Jeppesen E; Wang HJ
    Water Res; 2015 Oct; 83():385-95. PubMed ID: 26196308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and biochemical responses of Festuca sinensis seedlings to temperature and soil moisture stress.
    Wang JJ; Lin WH; Zhao YT; Meng C; Ma AW; Xue LH; Kuang Y; Tian P
    Funct Plant Biol; 2017 Oct; 44(10):1007-1015. PubMed ID: 32480628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submerged Macrophytes Exhibit Different Phosphorus Stoichiometric Homeostasis.
    Li W; Li Y; Zhong J; Fu H; Tu J; Fan H
    Front Plant Sci; 2018; 9():1207. PubMed ID: 30158949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.