These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35521160)

  • 1. Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique.
    Lukose J; N M; Mohan G; Shastry S; Chidangil S
    RSC Adv; 2019 Mar; 9(14):7878-7884. PubMed ID: 35521160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids.
    N M; Lukose J; Mohan G; Shastry S; Chidangil S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119726. PubMed ID: 33848954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study.
    Lukose J; Shastry S; Mithun N; Mohan G; Ahmed A; Chidangil S
    Biomed Phys Eng Express; 2020 Jan; 6(1):015036. PubMed ID: 33438624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.
    Liu R; Mao Z; Matthews DL; Li CS; Chan JW; Satake N
    Exp Hematol; 2013 Jul; 41(7):656-661.e1. PubMed ID: 23537725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells.
    Ahlawat S; Kumar N; Uppal A; Kumar Gupta P
    J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-sheet Raman tweezers for whole-cell biochemical analysis of functional red blood cells.
    Jayraj S; Sarmah P; Ghanashyam C; Bankapur A
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123951. PubMed ID: 38277790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-Raman Spectroscopy Analysis of Optically Trapped Erythrocytes in Jaundice.
    Jacob SS; Bankapur A; Barkur S; Acharya M; Chidangil S; Rao P; Kamath A; Lakshmi RV; Baby PM; Rao RK
    Front Physiol; 2020; 11():821. PubMed ID: 32754052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human red blood cell behaviour in hydroxyethyl starch: probed by single cell spectroscopy.
    N M; Lukose J; Shastry S; Mohan G; Chidangil S
    RSC Adv; 2020 Aug; 10(52):31453-31462. PubMed ID: 35520664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD; Harvey TJ; Correia Faria E; Gardner P
    Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Nanoparticle-Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells.
    Barkur S; Lukose J; Chidangil S
    ACS Omega; 2020 Jan; 5(3):1439-1447. PubMed ID: 32010816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers.
    Rao S; Bálint S; Cossins B; Guallar V; Petrov D
    Biophys J; 2009 Jan; 96(1):209-16. PubMed ID: 18931252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy.
    Liu Y; Wang Z; Zhou Z; Xiong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121274. PubMed ID: 35500354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Laser tweezers Raman spectroscopy analysis of liver cancer tissue].
    Wang YJ; Yao HL; Wang GW; Wang Y; Feng MF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1881-3. PubMed ID: 19798963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Trapping and Micro-Raman Spectroscopy of Functional Red Blood Cells Using Vortex Beam for Cell Membrane Studies.
    C G; Shetty S; Bharati S; Chidangil S; Bankapur A
    Anal Chem; 2021 Apr; 93(13):5484-5493. PubMed ID: 33764040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells.
    Rusciano G
    Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Raman tweezer spectroscopy to explore the bisphenol A-induced changes in human erythrocytes.
    Lukose J; N M; M P; Mohan G; Shastry S; Chidangil S
    RSC Adv; 2019 May; 9(28):15933-15940. PubMed ID: 35521407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a near-infrared laser tweezers Raman spectroscopy system for label-free analysis and differentiation of diabetic red blood cells.
    Lin J; Shao L; Qiu S; Huang X; Liu M; Zheng Z; Lin D; Xu Y; Li Z; Lin Y; Chen R; Feng S
    Biomed Opt Express; 2018 Mar; 9(3):984-993. PubMed ID: 29541498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-Raman spectroscopy study of optically trapped erythrocytes in malaria, dengue and leptospirosis infections.
    Jacob SS; Lukose J; Bankapur A; Mithun N; Vani Lakshmi R; Acharya M; Rao P; Kamath A; Baby PM; Rao RK; Chidangil S
    Front Med (Lausanne); 2022; 9():858776. PubMed ID: 36275819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders.
    Rusciano G; De Luca AC; Pesce G; Sasso A
    Sensors (Basel); 2008 Dec; 8(12):7818-7832. PubMed ID: 27873960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles.
    Redding B; Schwab M; Pan YL
    Sensors (Basel); 2015 Aug; 15(8):19021-46. PubMed ID: 26247952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.