BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35521199)

  • 1. Physicochemical characterization and optimization of glycolipid biosurfactant production by a native strain of
    Khademolhosseini R; Jafari A; Mousavi SM; Hajfarajollah H; Noghabi KA; Manteghian M
    RSC Adv; 2019 Mar; 9(14):7932-7947. PubMed ID: 35521199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery.
    Khademolhosseini R; Jafari A; Mousavi SM; Manteghian M
    RSC Adv; 2019 Jun; 9(35):20281-20294. PubMed ID: 35514690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of rhamnolipid production from
    Sharma R; Singh J; Verma N
    3 Biotech; 2018 Jan; 8(1):20. PubMed ID: 29276658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production, characterization, and application of Pseudoxanthomonas taiwanensis biosurfactant: a green chemical for microbial enhanced oil recovery (MEOR).
    Purwasena IA; Amaniyah M; Astuti DI; Firmansyah Y; Sugai Y
    Sci Rep; 2024 May; 14(1):10270. PubMed ID: 38704438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.
    Rabiei A; Sharifinik M; Niazi A; Hashemi A; Ayatollahi S
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5979-91. PubMed ID: 23553033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swift production of rhamnolipid biosurfactant, biopolymer and synthesis of biosurfactant-wrapped silver nanoparticles and its enhanced oil recovery.
    Elakkiya VT; SureshKumar P; Alharbi NS; Kadaikunnan S; Khaled JM; Govindarajan M
    Saudi J Biol Sci; 2020 Jul; 27(7):1892-1899. PubMed ID: 32565711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.
    Varjani SJ; Upasani VN
    Bioresour Technol; 2016 Nov; 220():175-182. PubMed ID: 27567478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.
    Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ
    Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.
    Sarafzadeh P; Hezave AZ; Ravanbakhsh M; Niazi A; Ayatollahi S
    Colloids Surf B Biointerfaces; 2013 May; 105():223-9. PubMed ID: 23376749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.
    Zhao F; Li P; Guo C; Shi RJ; Zhang Y
    Bioresour Technol; 2018 Mar; 251():295-302. PubMed ID: 29289873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of
    Haloi S; Sarmah S; Gogoi SB; Medhi T
    3 Biotech; 2020 Mar; 10(3):120. PubMed ID: 32117681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physico-chemical characterization of biosurfactant from
    Domdi L; Lakra AK; Tilwani YM; Arul V
    J Microbiol Biotechnol; 2020 Nov; ():. PubMed ID: 33203824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.
    Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y
    J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and Application of Biosurfactant Produced by
    Ali N; Wang F; Xu B; Safdar B; Ullah A; Naveed M; Wang C; Rashid MT
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermophilic Clostridium sp. N-4 produced a glycoprotein biosurfactant that enhanced recovery of residual oil at 96 °C in lab studies.
    Arora P; Kshirsagar PR; Rana DP; Dhakephalkar PK
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110372. PubMed ID: 31369953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.
    Dhanarajan G; Rangarajan V; Bandi C; Dixit A; Das S; Ale K; Sen R
    J Biotechnol; 2017 Aug; 256():46-56. PubMed ID: 28499818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhamnolipids Produced by Indigenous
    Dong H; Xia W; Dong H; She Y; Zhu P; Liang K; Zhang Z; Liang C; Song Z; Sun S; Zhang G
    Front Microbiol; 2016; 7():1710. PubMed ID: 27872613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20.
    Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA
    Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.