These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35521454)

  • 1. Promoting formic acid oxidation performance of Pd nanoparticles
    Bhalothia D; Huang TH; Chou PH; Wang KW; Chen TY
    RSC Adv; 2020 Apr; 10(29):17302-17310. PubMed ID: 35521454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO-Reductive and O
    Bhalothia D; Huang TH; Chou PH; Chen PC; Wang KW; Chen TY
    Sci Rep; 2020 May; 10(1):8457. PubMed ID: 32439867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Formic Acid Oxidation over SnO
    Rettenmaier C; Arán-Ais RM; Timoshenko J; Rizo R; Jeon HS; Kühl S; Chee SW; Bergmann A; Roldan Cuenya B
    ACS Catal; 2020 Dec; 10(24):14540-14551. PubMed ID: 33362944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable and Efficient PtRu Electrocatalysts Supported on Zn-BTC MOF Derived Microporous Carbon for Formic Acid Fuel Cells Application.
    Khan IA; Sofian M; Badshah A; Khan MA; Imran M; Nadeem MA
    Front Chem; 2020; 8():367. PubMed ID: 32478034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of low-dimensional PdPt nanocrystals for high-performance electrooxidation of C 2 alcohols.
    Gao F; Zhang Y; Zou B; Jiang F; Li Z; Du Y
    J Colloid Interface Sci; 2022 Mar; 610():271-279. PubMed ID: 34923267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Pd-Co-based nanocatalysts and their superior applications in formic acid decomposition and methanol oxidation.
    Qin YL; Liu YC; Liang F; Wang LM
    ChemSusChem; 2015 Jan; 8(2):260-3. PubMed ID: 25504901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol.
    Tuo Y; Liu G; Dong B; Yu H; Zhou J; Wang J; Jin R
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5249-5258. PubMed ID: 28004366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine Control over the Compositional Structure of Trimetallic Core-Shell Nanocrystals for Enhanced Electrocatalysis.
    Lee YW; Ahn H; Lee SE; Woo H; Han SW
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25901-25908. PubMed ID: 31251023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming ORR Activity of Ni/NiO
    Bhalothia D; Chou JP; Yan C; Hu A; Yang YT; Chen TY
    ACS Omega; 2018 Aug; 3(8):8733-8744. PubMed ID: 31459005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Bhalothia D; Lin CY; Yan C; Yang YT; Chen TY
    ACS Omega; 2019 Jan; 4(1):971-982. PubMed ID: 31459372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Hollow PdPt Nanocrystals via Reduction Kinetic Control for Their Superior Electrocatalytic Performances.
    Fang C; Zhao J; Jiang R; Wang J; Zhao G; Geng B
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29543-29551. PubMed ID: 30101581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyol assisted formaldehyde reduction of bi-metallic Pt-Pd supported agro-waste derived carbon spheres as an efficient electrocatalyst for formic acid and ethylene glycol oxidation.
    Rupa Kasturi P; Harivignesh R; Lee YS; Kalai Selvan R
    J Colloid Interface Sci; 2020 Mar; 561():358-371. PubMed ID: 31839268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions.
    Qin C; Fan A; Zhang X; Dai X; Sun H; Ren D; Dong Z; Wang Y; Luan C; Ye JY; Sun SG
    Nanoscale; 2019 May; 11(18):9061-9075. PubMed ID: 31025672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition.
    Zhang K; Hu X; Liu J; Yin JJ; Hou S; Wen T; He W; Ji Y; Guo Y; Wang Q; Wu X
    Langmuir; 2011 Mar; 27(6):2796-803. PubMed ID: 21332216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clean Electrochemical Synthesis of Pd-Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid.
    Liu J; Li F; Zhong C; Hu W
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Electrocatalytic Activity and Stability toward the Oxygen Reduction Reaction with Unprotected Pt Nanoclusters.
    Liu J; Yin J; Feng B; Xu T; Wang F
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30463295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Various Morphology of WO₃ Modified Activated Carbon Supported Pd Catalysts with Enhanced Formic Acid Electrooxidation.
    Li PW; Li YH; Ma YM; Li QX
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7777-7784. PubMed ID: 31196289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Activity and Selectivity of CO
    Chang Q; Kim J; Lee JH; Kattel S; Chen JG; Choi SI; Chen Z
    Small; 2020 Dec; 16(49):e2005305. PubMed ID: 33205618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyoxometalate-mediated one-pot synthesis of Pd nanocrystals with controlled morphologies for efficient chemical and electrochemical catalysis.
    Kim D; Seog JH; Kim M; Yang M; Gillette E; Lee SB; Han SW
    Chemistry; 2015 Mar; 21(14):5387-94. PubMed ID: 25684660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.