These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35521942)

  • 1.
    Park SJ; Jung TH; Kim JH; Lee KY; Kim J; Ju J; Moon SH
    Biomater Sci; 2022 May; 10(11):2991-3005. PubMed ID: 35521942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Proof-of-Concept Study Using Numerical Simulations of an Acoustic Spheroid-on-a-Chip Platform for Improving 3D Cell Culture.
    Yahyazadeh Shourabi A; Salajeghe R; Barisam M; Kashaninejad N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Death Analysis in Cancer Spheroids from a Microfluidic Device.
    Lafontaine J; Refet-Mollof E; Najyb O; Gervais T; Wong P
    Methods Mol Biol; 2022; 2543():13-25. PubMed ID: 36087255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rocking- and diffusion-based culture of tumor spheroids-on-a-chip.
    Tian D; Mao Z; Wang L; Huang X; Wang W; Luo H; Peng J; Chen Y
    Lab Chip; 2024 Apr; 24(9):2561-2574. PubMed ID: 38629978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip".
    Bakuova N; Toktarkan S; Dyussembinov D; Azhibek D; Rakhymzhanov A; Kostas K; Kulsharova G
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-size spheroid formation using microfluidic funnels.
    Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T
    Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip.
    Azizipour N; Avazpour R; Sawan M; Ajji A; H Rosenzweig D
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in cancer modeling: fluidic systems for increasing representativeness of large 3D multicellular spheroids.
    Piccinini F; Santis I; Bevilacqua A
    Biotechniques; 2018 Dec; 65(6):312-314. PubMed ID: 30477324
    [No Abstract]   [Full Text] [Related]  

  • 16. Long-term fluorescence hyperspectral imaging of on-chip treated co-culture tumour spheroids to follow clonal evolution.
    St-Georges-Robillard A; Cahuzac M; Péant B; Fleury H; Lateef MA; Ricard A; Sauriol A; Leblond F; Mes-Masson AM; Gervais T
    Integr Biol (Camb); 2019 Apr; 11(4):130-141. PubMed ID: 31172192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis.
    Ko J; Ahn J; Kim S; Lee Y; Lee J; Park D; Jeon NL
    Lab Chip; 2019 Sep; 19(17):2822-2833. PubMed ID: 31360969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study.
    Kheiri S; Kumacheva E; Young EWK
    Front Bioeng Biotechnol; 2021; 9():781566. PubMed ID: 34888303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence hyperspectral imaging for live monitoring of multiple spheroids in microfluidic chips.
    St-Georges-Robillard A; Masse M; Cahuzac M; Strupler M; Patra B; Orimoto AM; Kendall-Dupont J; Péant B; Mes-Masson AM; Leblond F; Gervais T
    Analyst; 2018 Aug; 143(16):3829-3840. PubMed ID: 29999046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform.
    Park J; Lee GH; Yull Park J; Lee JC; Kim HC
    Biofabrication; 2017 Nov; 9(4):045006. PubMed ID: 29045238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.