These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35522186)
1. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue. Fritz M; Köppl T; Oden JT; Wagner A; Wohlmuth B; Wu C Int J Numer Method Biomed Eng; 2022 Jul; 38(7):e3612. PubMed ID: 35522186 [TBL] [Abstract][Full Text] [Related]
2. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models. Kroon W; Huberts W; Bosboom M; van de Vosse F Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957 [TBL] [Abstract][Full Text] [Related]
3. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. Pfaller MR; Pham J; Verma A; Pegolotti L; Wilson NM; Parker DW; Yang W; Marsden AL Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3639. PubMed ID: 35875875 [TBL] [Abstract][Full Text] [Related]
4. Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation. Feiger B; Adebiyi A; Randles A Comput Biol Med; 2021 Feb; 129():104155. PubMed ID: 33333365 [TBL] [Abstract][Full Text] [Related]
5. A one-dimensional computational model for blood flow in an elastic blood vessel with a rigid catheter. Pradhan AM; Mut F; Cebral JR Int J Numer Method Biomed Eng; 2024 Jul; 40(7):e3834. PubMed ID: 38736046 [TBL] [Abstract][Full Text] [Related]
6. Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations. Wei H; Amlani F; Pahlevan NM Int J Numer Method Biomed Eng; 2023 May; 39(5):e3683. PubMed ID: 36629353 [TBL] [Abstract][Full Text] [Related]
7. A Computational Study of Blood Flow Dynamics in the Pulmonary Arteries. Marcinno' F; Zingaro A; Fumagalli I; Dede' L; Vergara C Vietnam J Math; 2023; 51(1):127-149. PubMed ID: 36536831 [TBL] [Abstract][Full Text] [Related]
8. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
9. First blood: An efficient, hybrid one- and zero-dimensional, modular hemodynamic solver. Wéber R; Gyürki D; Paál G Int J Numer Method Biomed Eng; 2023 May; 39(5):e3701. PubMed ID: 36948891 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896 [TBL] [Abstract][Full Text] [Related]
11. A black-box decomposition approach for coupling heterogeneous components in hemodynamics simulations. Blanco PJ; Leiva JS; Buscaglia GC Int J Numer Method Biomed Eng; 2013 Mar; 29(3):408-27. PubMed ID: 23345261 [TBL] [Abstract][Full Text] [Related]
12. Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes. Murillo J; García-Navarro P Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3751. PubMed ID: 38018384 [TBL] [Abstract][Full Text] [Related]
13. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Formaggia L; Lamponi D; Tuveri M; Veneziani A Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614 [TBL] [Abstract][Full Text] [Related]
14. Reducing the number of parameters in 1D arterial blood flow modeling: less is more for patient-specific simulations. Epstein S; Willemet M; Chowienczyk PJ; Alastruey J Am J Physiol Heart Circ Physiol; 2015 Jul; 309(1):H222-34. PubMed ID: 25888513 [TBL] [Abstract][Full Text] [Related]
15. An effective fractal-tree closure model for simulating blood flow in large arterial networks. Perdikaris P; Grinberg L; Karniadakis GE Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364 [TBL] [Abstract][Full Text] [Related]
16. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Boileau E; Nithiarasu P; Blanco PJ; Müller LO; Fossan FE; Hellevik LR; Donders WP; Huberts W; Willemet M; Alastruey J Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26100764 [TBL] [Abstract][Full Text] [Related]
17. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics. Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468 [TBL] [Abstract][Full Text] [Related]
18. Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model. Wang X; Fullana JM; Lagrée PY Comput Methods Biomech Biomed Engin; 2015; 18(15):1704-25. PubMed ID: 25145651 [TBL] [Abstract][Full Text] [Related]
19. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data. Zhang H; Fujiwara N; Kobayashi M; Yamada S; Liang F; Takagi S; Oshima M Ann Biomed Eng; 2016 Aug; 44(8):2351-2363. PubMed ID: 26721836 [TBL] [Abstract][Full Text] [Related]
20. A coupling strategy for a first 3D-1D model of the cardiovascular system to study the effects of pulse wave propagation on cardiac function. Caforio F; Augustin CM; Alastruey J; Gsell MAF; Plank G Comput Mech; 2022; 70(4):703-722. PubMed ID: 36124206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]